A Metagenomic Analysis with Oligotrophic Enrichment Approach for Detecting Specified Microorganisms.

Q3 Medicine
B Marasa, S Daddy Gaoh, P Alusta, Y-J Lee, J J LiPuma, D Hussong, Y Ahn
{"title":"A Metagenomic Analysis with Oligotrophic Enrichment Approach for Detecting Specified Microorganisms.","authors":"B Marasa, S Daddy Gaoh, P Alusta, Y-J Lee, J J LiPuma, D Hussong, Y Ahn","doi":"10.5731/pdajpst.2024.99902","DOIUrl":null,"url":null,"abstract":"<p><p>In pharmaceutical manufacturing, benefit is conferred in detection of specified microorganism (i.e., Burkholderia cepacia complex (BCC), E. coli, Pseudomonas aeruginosa, Salmonella enterica) not readily identified by culture-dependent methods. It's logical to test for the presence of \"specified microorganism\" using metagenomic analysis before culturing a \"specified organism\", especially when the organism isn't easy to culture. We developed a metagenomic analysis during enrichment to identify specified organisms. The enriched bacterial community consisted predominantly of Bacillus spp. and Stenotrophomonas spp., each contributing about 97-99% to total taxon abundance in TSB and 1/10× TSB. The specified microorganisms that were observed were Clostridium spp., Burkholderia spp., and Staphylococcus spp. (0.04 - 0.07%) in TSB, otherwise Burkholderia spp., Pseudomonas spp., Salmonella spp., Staphylococcus spp. and Escherichia spp. (0.01 - 1.73%) in 1/10× TSB. PreQ0 biosynthesis (PWY-6703) and guanosine ribonucleotides de novo biosynthesis (PWY-7221) were the most abundant pathways in 1/10× TSB-24 h. BCC chiefly contributed to the toluene degradation (PWY-5180 and PWY-5182) pathways. Initial results demonstrate the potential of the metagenomic approach during enrichment in water-based environments. These results indicate that a metagenomic enrichment approach to evaluating water samples can be useful to monitor specified organisms over time, including oligotrophs such as BCC in 1/10× TSB.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":"78 6","pages":"753-754"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PDA Journal of Pharmaceutical Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5731/pdajpst.2024.99902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

In pharmaceutical manufacturing, benefit is conferred in detection of specified microorganism (i.e., Burkholderia cepacia complex (BCC), E. coli, Pseudomonas aeruginosa, Salmonella enterica) not readily identified by culture-dependent methods. It's logical to test for the presence of "specified microorganism" using metagenomic analysis before culturing a "specified organism", especially when the organism isn't easy to culture. We developed a metagenomic analysis during enrichment to identify specified organisms. The enriched bacterial community consisted predominantly of Bacillus spp. and Stenotrophomonas spp., each contributing about 97-99% to total taxon abundance in TSB and 1/10× TSB. The specified microorganisms that were observed were Clostridium spp., Burkholderia spp., and Staphylococcus spp. (0.04 - 0.07%) in TSB, otherwise Burkholderia spp., Pseudomonas spp., Salmonella spp., Staphylococcus spp. and Escherichia spp. (0.01 - 1.73%) in 1/10× TSB. PreQ0 biosynthesis (PWY-6703) and guanosine ribonucleotides de novo biosynthesis (PWY-7221) were the most abundant pathways in 1/10× TSB-24 h. BCC chiefly contributed to the toluene degradation (PWY-5180 and PWY-5182) pathways. Initial results demonstrate the potential of the metagenomic approach during enrichment in water-based environments. These results indicate that a metagenomic enrichment approach to evaluating water samples can be useful to monitor specified organisms over time, including oligotrophs such as BCC in 1/10× TSB.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信