{"title":"A Bayesian Hybrid Design With Borrowing From Historical Study.","authors":"Zhaohua Lu, John Toso, Girma Ayele, Philip He","doi":"10.1002/pst.2466","DOIUrl":null,"url":null,"abstract":"<p><p>In early phase drug development of combination therapy, the primary objective is to preliminarily assess whether there is additive activity from a novel agent when combined with an established monotherapy. Due to potential feasibility issues for conducting a large randomized study, uncontrolled single-arm trials have been the mainstream approach in cancer clinical trials. However, such trials often present significant challenges in deciding whether to proceed to the next phase of development due to the lack of randomization in traditional two-arm trials. A hybrid design, leveraging data from a completed historical clinical study of the monotherapy, offers a valuable option to enhance study efficiency and improve informed decision-making. Compared to traditional single-arm designs, the hybrid design may significantly enhance power by borrowing external information, enabling a more robust assessment of activity. The primary challenge of hybrid design lies in handling information borrowing. We introduce a Bayesian dynamic power prior (DPP) framework with three components of controlling amount of dynamic borrowing. The framework offers flexible study design options with explicit interpretation of borrowing, allowing customization according to specific needs. Furthermore, the posterior distribution in the proposed framework has a closed form, offering significant advantages in computational efficiency. The proposed framework's utility is demonstrated through simulations and a case study.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2466","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In early phase drug development of combination therapy, the primary objective is to preliminarily assess whether there is additive activity from a novel agent when combined with an established monotherapy. Due to potential feasibility issues for conducting a large randomized study, uncontrolled single-arm trials have been the mainstream approach in cancer clinical trials. However, such trials often present significant challenges in deciding whether to proceed to the next phase of development due to the lack of randomization in traditional two-arm trials. A hybrid design, leveraging data from a completed historical clinical study of the monotherapy, offers a valuable option to enhance study efficiency and improve informed decision-making. Compared to traditional single-arm designs, the hybrid design may significantly enhance power by borrowing external information, enabling a more robust assessment of activity. The primary challenge of hybrid design lies in handling information borrowing. We introduce a Bayesian dynamic power prior (DPP) framework with three components of controlling amount of dynamic borrowing. The framework offers flexible study design options with explicit interpretation of borrowing, allowing customization according to specific needs. Furthermore, the posterior distribution in the proposed framework has a closed form, offering significant advantages in computational efficiency. The proposed framework's utility is demonstrated through simulations and a case study.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.