Konstantinos Sechidis, Sophie Sun, Yao Chen, Jiarui Lu, Cong Zhang, Mark Baillie, David Ohlssen, Marc Vandemeulebroecke, Rob Hemmings, Stephen Ruberg, Björn Bornkamp
{"title":"WATCH: A Workflow to Assess Treatment Effect Heterogeneity in Drug Development for Clinical Trial Sponsors.","authors":"Konstantinos Sechidis, Sophie Sun, Yao Chen, Jiarui Lu, Cong Zhang, Mark Baillie, David Ohlssen, Marc Vandemeulebroecke, Rob Hemmings, Stephen Ruberg, Björn Bornkamp","doi":"10.1002/pst.2463","DOIUrl":null,"url":null,"abstract":"<p><p>This article proposes a Workflow for Assessing Treatment effeCt Heterogeneity (WATCH) in clinical drug development targeted at clinical trial sponsors. WATCH is designed to address the challenges of investigating treatment effect heterogeneity (TEH) in randomized clinical trials, where sample size and multiplicity limit the reliability of findings. The proposed workflow includes four steps: analysis planning, initial data analysis and analysis dataset creation, TEH exploration, and multidisciplinary assessment. The workflow offers a general overview of how treatment effects vary by baseline covariates in the observed data and guides the interpretation of the observed findings based on external evidence and the best scientific understanding. The workflow is exploratory and not inferential/confirmatory in nature but should be preplanned before database lock and analysis start. It is focused on providing a general overview rather than a single specific finding or subgroup with a differential effect.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2463","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a Workflow for Assessing Treatment effeCt Heterogeneity (WATCH) in clinical drug development targeted at clinical trial sponsors. WATCH is designed to address the challenges of investigating treatment effect heterogeneity (TEH) in randomized clinical trials, where sample size and multiplicity limit the reliability of findings. The proposed workflow includes four steps: analysis planning, initial data analysis and analysis dataset creation, TEH exploration, and multidisciplinary assessment. The workflow offers a general overview of how treatment effects vary by baseline covariates in the observed data and guides the interpretation of the observed findings based on external evidence and the best scientific understanding. The workflow is exploratory and not inferential/confirmatory in nature but should be preplanned before database lock and analysis start. It is focused on providing a general overview rather than a single specific finding or subgroup with a differential effect.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.