Jeong-Su Park , Yuan-Qiang Ma , Feng Wang , Hwan Ma , Guoyan Sui , Nodir Rustamov , Minyeong Han , Yejin Son , Chun-Woong Park , Sang-Bae Han , Jin Tae Hong , Lak Shin Jeong , Jin Lee , Yoon Seok Roh
{"title":"A3AR antagonism mitigates metabolic dysfunction-associated steatotic liver disease by exploiting monocyte-derived Kupffer cell necroptosis and inflammation resolution","authors":"Jeong-Su Park , Yuan-Qiang Ma , Feng Wang , Hwan Ma , Guoyan Sui , Nodir Rustamov , Minyeong Han , Yejin Son , Chun-Woong Park , Sang-Bae Han , Jin Tae Hong , Lak Shin Jeong , Jin Lee , Yoon Seok Roh","doi":"10.1016/j.metabol.2024.156114","DOIUrl":null,"url":null,"abstract":"<div><h3>Background & aims</h3><div>Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.</div></div><div><h3>Approach & results</h3><div>A3AR expression was significantly elevated in KCs from both patients with MASLD and fast-food diet (FFD)-fed mice. A3AR knockout (KO) mice displayed marked improvements in hepatic inflammation and fibrosis along with a reduction in CLEC4F-positive KCs. The spatial transcriptomics of these KCs revealed disrupted mitochondrial integrity, increased oxidative stress, and enhanced cell death due to A3AR deletion. Similarly, in vivo FM101 treatment, a highly potent and selective antagonist of A3AR with a truncated 4′-thioadenosine structure, mitigated FFD-induced MASLD in mice. Mechanistically, FM101 induces β-arrestin2-mediated A3AR degradation, leading to mitochondrial dysfunction-mediated necroptosis in KCs. Consistently, A3AR was highly expressed in monocyte-derived macrophages in MASLD patients, with strong correlations with macrophage activation and monocyte chemoattractant gene sets. Thus, FM101 induced necroptosis in pro-inflammatory MoKCs, facilitating anti-inflammatory effects.</div></div><div><h3>Conclusions</h3><div>This study demonstrated that inhibiting A3AR via FM101 or genetic deletion alleviates MASLD by inducing mitochondrial dysfunction and subsequent necroptosis in MoKCs, establishing FM101 as a promising therapeutic strategy for MASLD.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"164 ","pages":"Article 156114"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049524003421","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aims
Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.
Approach & results
A3AR expression was significantly elevated in KCs from both patients with MASLD and fast-food diet (FFD)-fed mice. A3AR knockout (KO) mice displayed marked improvements in hepatic inflammation and fibrosis along with a reduction in CLEC4F-positive KCs. The spatial transcriptomics of these KCs revealed disrupted mitochondrial integrity, increased oxidative stress, and enhanced cell death due to A3AR deletion. Similarly, in vivo FM101 treatment, a highly potent and selective antagonist of A3AR with a truncated 4′-thioadenosine structure, mitigated FFD-induced MASLD in mice. Mechanistically, FM101 induces β-arrestin2-mediated A3AR degradation, leading to mitochondrial dysfunction-mediated necroptosis in KCs. Consistently, A3AR was highly expressed in monocyte-derived macrophages in MASLD patients, with strong correlations with macrophage activation and monocyte chemoattractant gene sets. Thus, FM101 induced necroptosis in pro-inflammatory MoKCs, facilitating anti-inflammatory effects.
Conclusions
This study demonstrated that inhibiting A3AR via FM101 or genetic deletion alleviates MASLD by inducing mitochondrial dysfunction and subsequent necroptosis in MoKCs, establishing FM101 as a promising therapeutic strategy for MASLD.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism