Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure.

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yingya Chen, Zhen Zhang, Jie Ma, Ke Pan
{"title":"Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure.","authors":"Yingya Chen, Zhen Zhang, Jie Ma, Ke Pan","doi":"10.1016/j.marenvres.2024.106928","DOIUrl":null,"url":null,"abstract":"<p><p>The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO<sub>2</sub>, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum. Our data indicate that elevated pCO<sub>2</sub> had a minor effect on the growth and photochemistry and overall performance of P. tricornutum. However, seawater acidification significantly influenced cell size, surface roughness, and adhesion. Higher pCO<sub>2</sub> levels led to increased Cu accumulation in P. tricornutum under low ambient Cu concentrations, while significantly reducing Cu accumulation. The smaller cell size and reduced negative charge on the cell surface may explain the decreased Cu accumulation and toxicity. In response to metal stress, P. tricornutum upregulated Cu efflux to mitigate the increased Cu stress in acidified seawater. The expression of the metal transporter gene CTR1 and the reductase gene FRE1 were significantly downregulated, while ATPase5-1B was upregulated in cells exposed to elevated Cu concentrations at 1200 μatm pCO<sub>2</sub>. Our study provides useful insights into the interactions between metals and diatoms in an increasingly acidified ocean.</p>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"106928"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marenvres.2024.106928","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO2, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum. Our data indicate that elevated pCO2 had a minor effect on the growth and photochemistry and overall performance of P. tricornutum. However, seawater acidification significantly influenced cell size, surface roughness, and adhesion. Higher pCO2 levels led to increased Cu accumulation in P. tricornutum under low ambient Cu concentrations, while significantly reducing Cu accumulation. The smaller cell size and reduced negative charge on the cell surface may explain the decreased Cu accumulation and toxicity. In response to metal stress, P. tricornutum upregulated Cu efflux to mitigate the increased Cu stress in acidified seawater. The expression of the metal transporter gene CTR1 and the reductase gene FRE1 were significantly downregulated, while ATPase5-1B was upregulated in cells exposed to elevated Cu concentrations at 1200 μatm pCO2. Our study provides useful insights into the interactions between metals and diatoms in an increasingly acidified ocean.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信