{"title":"Metabolic and molecular basis of flavonoid biosynthesis in Lycii fructus: An integration of metabolomic and transcriptomic analysis.","authors":"Limei Tong, Yinxiu Jiang, Xinrun Zhang, Xia Zhang, Wenhua Zhang, Gang Ren, Zhanping Chen, Yuling Zhao, Sheng Guo, Hui Yan, Yang Pan, Jin-Ao Duan, Fang Zhang","doi":"10.1016/j.jpba.2024.116653","DOIUrl":null,"url":null,"abstract":"<p><p>Flavonoids serve as bioactive components and contribute to medicinal and nutritional profile of Lycii fructus. However, there is limited information regarding the influence of ecological environments on the flavonoid biosynthesis pathway. In this study, we integrated transcriptome sequencing and metabonomic techniques across three distinct cultivation regions to elucidate the processes of flavonoids biosynthesis and the associated gene expression levels in L. fructus. LC-MS/MS based metabolomics revealed significant variations in metabolite profiles including 43 differential flavonoid metabolites, predominantly consisting of flavanol compounds across diverse regions. Additionally, 154 significantly differentially expressed genes (DEGs) were categorized in the flavonoid biosynthesis identified by de novo transcriptome assembly. Transcription factors C2C2 MYB, NAC, WRKY, AP2/ERF and B3 superfamily were the mainly hub genes regulating the flavonoids biosynthesis. The flavonoid pathway was built through integrated analysis of DEGs and DAMs to illustrate the molecular mechanism of flavonoid biosynthesis. Precipitation and temperature may serve as the primary environmental factors that affected the flavonoids variations. This study proposed a schematic of flavonoid biosynthesis in L. fructus, and further provided evidence for environmental response of L. fructus.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"255 ","pages":"116653"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2024.116653","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flavonoids serve as bioactive components and contribute to medicinal and nutritional profile of Lycii fructus. However, there is limited information regarding the influence of ecological environments on the flavonoid biosynthesis pathway. In this study, we integrated transcriptome sequencing and metabonomic techniques across three distinct cultivation regions to elucidate the processes of flavonoids biosynthesis and the associated gene expression levels in L. fructus. LC-MS/MS based metabolomics revealed significant variations in metabolite profiles including 43 differential flavonoid metabolites, predominantly consisting of flavanol compounds across diverse regions. Additionally, 154 significantly differentially expressed genes (DEGs) were categorized in the flavonoid biosynthesis identified by de novo transcriptome assembly. Transcription factors C2C2 MYB, NAC, WRKY, AP2/ERF and B3 superfamily were the mainly hub genes regulating the flavonoids biosynthesis. The flavonoid pathway was built through integrated analysis of DEGs and DAMs to illustrate the molecular mechanism of flavonoid biosynthesis. Precipitation and temperature may serve as the primary environmental factors that affected the flavonoids variations. This study proposed a schematic of flavonoid biosynthesis in L. fructus, and further provided evidence for environmental response of L. fructus.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.