An in-silico study of FIKK9.5 protein of Plasmodium falciparum for identification of therapeutics.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Prajna Ritaparna, Ajit Kumar Dhal, Rajani Kanta Mahapatra
{"title":"An <i>in-silico</i> study of FIKK9.5 protein of <i>Plasmodium falciparum</i> for identification of therapeutics.","authors":"Prajna Ritaparna, Ajit Kumar Dhal, Rajani Kanta Mahapatra","doi":"10.1080/07391102.2024.2446671","DOIUrl":null,"url":null,"abstract":"<p><p>The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in <i>Plasmodium falciparum</i> which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target. Among the FIKKs, FIKK9.5 plays a pivotal role in the parasite's development within red blood cells (RBCs). This investigation acquired the three-dimensional structure of FIKK9.5 and its ligands through extensive database searches and literature review. Computational screening of natural phytochemicals derived from plants traditionally used in antimalarial remedies was conducted by employing the Glide docking suite. AutoDock Vina was utilized to discern the inhibitor exhibiting optimal binding affinity. Subsequently, Molecular Dynamics (MD) simulations employing GROMACS validated Rufigallol as the most potent inhibitory compound against FIKK9.5. The robustness of the protein-ligand complex was scrutinized through a 200 nanosecond molecular dynamics (MD) trajectory. Trajectory analysis and determination of binding free energies were accomplished using MM-GBSA and MM-PBSA approaches. The ligand-binding exhibited sustained stability throughout the simulation, manifesting an approximate binding free energy of -25.5986 kcal/mol. This comprehensive computational study lays the groundwork for potential experimental validation in the laboratory, paving the way for the development of novel therapeutics targeting FIKK9.5 in the pursuit of innovative antimalarial.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-14"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2446671","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in Plasmodium falciparum which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target. Among the FIKKs, FIKK9.5 plays a pivotal role in the parasite's development within red blood cells (RBCs). This investigation acquired the three-dimensional structure of FIKK9.5 and its ligands through extensive database searches and literature review. Computational screening of natural phytochemicals derived from plants traditionally used in antimalarial remedies was conducted by employing the Glide docking suite. AutoDock Vina was utilized to discern the inhibitor exhibiting optimal binding affinity. Subsequently, Molecular Dynamics (MD) simulations employing GROMACS validated Rufigallol as the most potent inhibitory compound against FIKK9.5. The robustness of the protein-ligand complex was scrutinized through a 200 nanosecond molecular dynamics (MD) trajectory. Trajectory analysis and determination of binding free energies were accomplished using MM-GBSA and MM-PBSA approaches. The ligand-binding exhibited sustained stability throughout the simulation, manifesting an approximate binding free energy of -25.5986 kcal/mol. This comprehensive computational study lays the groundwork for potential experimental validation in the laboratory, paving the way for the development of novel therapeutics targeting FIKK9.5 in the pursuit of innovative antimalarial.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信