Harry-Anton Talvik, Marek Oja, Sirli Tamm, Kerli Mooses, Dage Särg, Marcus Lõo, Õie Renata Siimon, Hendrik Šuvalov, Raivo Kolde, Jaak Vilo, Sulev Reisberg, Sven Laur
{"title":"Repeatable process for extracting health data from HL7 CDA documents.","authors":"Harry-Anton Talvik, Marek Oja, Sirli Tamm, Kerli Mooses, Dage Särg, Marcus Lõo, Õie Renata Siimon, Hendrik Šuvalov, Raivo Kolde, Jaak Vilo, Sulev Reisberg, Sven Laur","doi":"10.1016/j.jbi.2024.104765","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to address the gap in the literature on converting real-world Clinical Document Architecture (CDA) data into the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM), focusing on the initial steps preceding the mapping phase. We highlight the importance of a repeatable Extract-Transform-Load (ETL) pipeline for health data extraction from HL7 CDA documents in Estonia for research purposes.</p><p><strong>Methods: </strong>We developed a repeatable ETL pipeline to facilitate the extraction, cleaning, and restructuring of health data from CDA documents to OMOP CDM, ensuring a high-quality and structured data format. This pipeline was designed to adapt to continuously updated data exchange format changes and handle various CDA document subsets for different scientific studies.</p><p><strong>Results: </strong>We demonstrated via selected use cases that our pipeline successfully transformed a significant portion of diagnosis codes, body weight and eGFR measurements, and PAP test results from CDA documents into OMOP CDM, showing the ease of extracting structured data. However, challenges such as harmonising diverse coding systems and extracting lab results from free-text sections were encountered. The iterative development of the pipeline facilitated swift error detection and correction, enhancing the process's efficiency.</p><p><strong>Conclusion: </strong>After a decade of focused work, our research has led to the development of an ETL pipeline that effectively transforms HL7 CDA documents into OMOP CDM in Estonia, addressing key data extraction and transformation challenges. The pipeline's repeatability and adaptability to various data subsets make it a valuable resource for researchers dealing with health data. While tested on Estonian data, the principles outlined are broadly applicable, potentially aiding in handling health data standards that vary by country. Despite newer health data standards emerging, the relevance of CDA for retrospective health studies ensures the continuing importance of this work.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104765"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2024.104765","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aims to address the gap in the literature on converting real-world Clinical Document Architecture (CDA) data into the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM), focusing on the initial steps preceding the mapping phase. We highlight the importance of a repeatable Extract-Transform-Load (ETL) pipeline for health data extraction from HL7 CDA documents in Estonia for research purposes.
Methods: We developed a repeatable ETL pipeline to facilitate the extraction, cleaning, and restructuring of health data from CDA documents to OMOP CDM, ensuring a high-quality and structured data format. This pipeline was designed to adapt to continuously updated data exchange format changes and handle various CDA document subsets for different scientific studies.
Results: We demonstrated via selected use cases that our pipeline successfully transformed a significant portion of diagnosis codes, body weight and eGFR measurements, and PAP test results from CDA documents into OMOP CDM, showing the ease of extracting structured data. However, challenges such as harmonising diverse coding systems and extracting lab results from free-text sections were encountered. The iterative development of the pipeline facilitated swift error detection and correction, enhancing the process's efficiency.
Conclusion: After a decade of focused work, our research has led to the development of an ETL pipeline that effectively transforms HL7 CDA documents into OMOP CDM in Estonia, addressing key data extraction and transformation challenges. The pipeline's repeatability and adaptability to various data subsets make it a valuable resource for researchers dealing with health data. While tested on Estonian data, the principles outlined are broadly applicable, potentially aiding in handling health data standards that vary by country. Despite newer health data standards emerging, the relevance of CDA for retrospective health studies ensures the continuing importance of this work.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.