Target protein identification in live cells and organisms with a non-diffusive proximity tagging system.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2024-12-27 DOI:10.7554/eLife.102667
Yingjie Sun, Changheng Li, Xiaofei Deng, Wenjie Li, Xiaoyi Deng, Weiqi Ge, Miaoyuan Shi, Ying Guo, Yanxun V Yu, Hai-Bing Zhou, Youngnam N Jin
{"title":"Target protein identification in live cells and organisms with a non-diffusive proximity tagging system.","authors":"Yingjie Sun, Changheng Li, Xiaofei Deng, Wenjie Li, Xiaoyi Deng, Weiqi Ge, Miaoyuan Shi, Ying Guo, Yanxun V Yu, Hai-Bing Zhou, Youngnam N Jin","doi":"10.7554/eLife.102667","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug-protein interactions, such as those with transient protein complexes and membrane-associated proteins. To address these limitations, we developed POST-IT (Pup-On-target for Small molecule Target Identification Technology), a non-diffusive proximity tagging system for live cells, orthogonal to the eukaryotic system. POST-IT utilizes an engineered fusion of proteasomal accessory factor A and HaloTag to transfer Pup to proximal proteins upon directly binding to the small molecule. After significant optimization to eliminate self-pupylation and polypupylation, minimize depupylation, and optimize chemical linkers, POST-IT successfully identified known targets and discovered a new binder, SEPHS2, for dasatinib, and VPS37C as a new target for hydroxychloroquine, enhancing our understanding these drugs' mechanisms of action. Furthermore, we demonstrated the application of POST-IT in live zebrafish embryos, highlighting its potential for broad biological research and drug development.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.102667","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug-protein interactions, such as those with transient protein complexes and membrane-associated proteins. To address these limitations, we developed POST-IT (Pup-On-target for Small molecule Target Identification Technology), a non-diffusive proximity tagging system for live cells, orthogonal to the eukaryotic system. POST-IT utilizes an engineered fusion of proteasomal accessory factor A and HaloTag to transfer Pup to proximal proteins upon directly binding to the small molecule. After significant optimization to eliminate self-pupylation and polypupylation, minimize depupylation, and optimize chemical linkers, POST-IT successfully identified known targets and discovered a new binder, SEPHS2, for dasatinib, and VPS37C as a new target for hydroxychloroquine, enhancing our understanding these drugs' mechanisms of action. Furthermore, we demonstrated the application of POST-IT in live zebrafish embryos, highlighting its potential for broad biological research and drug development.

用非扩散接近标记系统鉴定活细胞和生物体中的靶蛋白。
识别生物活性分子的靶蛋白对于理解其机制、开发改进的衍生物和减少脱靶效应至关重要。尽管靶标识别(target- id)技术取得了进步,但仍存在重大挑战,阻碍了药物的开发。大多数靶向识别方法使用细胞裂解物,但保持完整的细胞环境对于捕获特定的药物-蛋白质相互作用至关重要,例如瞬态蛋白复合物和膜相关蛋白。为了解决这些限制,我们开发了POST-IT (Pup-On-target for Small molecule Target Identification Technology),这是一种针对活细胞的非扩散接近标记系统,与真核系统正交。POST-IT利用蛋白酶体辅助因子A和HaloTag的工程融合,将Pup直接与小分子结合,转移到近端蛋白上。POST-IT在对消除自聚和多聚、减少副聚和优化化学连接进行了大量优化后,成功地鉴定出了已知靶点,并发现了达沙替尼的新结合物SEPHS2和羟氯喹的新靶点VPS37C,加深了我们对这些药物作用机制的了解。此外,我们展示了POST-IT在活斑马鱼胚胎中的应用,强调了其在广泛的生物学研究和药物开发方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信