Tailoring of levansucrase product size by a comparative molecular dynamics approach.

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhiwei Li, Tong Bao, Kaiwen Chen, Chao Hu, Xinyu Zhang, Xueqin Hu, Jingwen Yang, Hongbin Zhang
{"title":"Tailoring of levansucrase product size by a comparative molecular dynamics approach.","authors":"Zhiwei Li, Tong Bao, Kaiwen Chen, Chao Hu, Xinyu Zhang, Xueqin Hu, Jingwen Yang, Hongbin Zhang","doi":"10.1016/j.enzmictec.2024.110577","DOIUrl":null,"url":null,"abstract":"<p><p>Levan is widely used as food additives. Its utilization is significantly influenced by its molecular weight. Bacillus subtilis levansucrase (Bs-SacB) and Priestia megaterium levansucrase (Pm-SacB) yield levan of different weights. To delve deeper into the molecular underpinnings of the molecular weight disparity between the products of these two enzymes, we conducted a focused study on the eight loops surrounding the active sites of Bs-SacB and Pm-SacB and identified Loop3 and loop4 as critical determinants in changing the molecular weight of Bs-SacB 's products. Subsequently, leveraging mutation energy analysis and non-homologous substitution strategies, we crafted tailored modifications in loop3 and loop4, yielding a spectrum of mutant enzymes that exhibit diverse molecular weight profiles including F182Y (3698 Da), CYTI (3093 Da), 3-Pbl (2776 Da), 4-Bml (1845 Da), and F182K (1571 Da). This research provide a novel comparative molecular dynamics approach to change product molecular weight and it is successfully applied in the modification of levansucrase.</p>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"184 ","pages":"110577"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enzmictec.2024.110577","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Levan is widely used as food additives. Its utilization is significantly influenced by its molecular weight. Bacillus subtilis levansucrase (Bs-SacB) and Priestia megaterium levansucrase (Pm-SacB) yield levan of different weights. To delve deeper into the molecular underpinnings of the molecular weight disparity between the products of these two enzymes, we conducted a focused study on the eight loops surrounding the active sites of Bs-SacB and Pm-SacB and identified Loop3 and loop4 as critical determinants in changing the molecular weight of Bs-SacB 's products. Subsequently, leveraging mutation energy analysis and non-homologous substitution strategies, we crafted tailored modifications in loop3 and loop4, yielding a spectrum of mutant enzymes that exhibit diverse molecular weight profiles including F182Y (3698 Da), CYTI (3093 Da), 3-Pbl (2776 Da), 4-Bml (1845 Da), and F182K (1571 Da). This research provide a novel comparative molecular dynamics approach to change product molecular weight and it is successfully applied in the modification of levansucrase.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信