Mechanistic Learning for Predicting Survival Outcomes in Head and Neck Squamous Cell Carcinoma.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Kevin Atsou, Anne Auperin, Jôel Guigay, Sébastien Salas, Sebastien Benzekry
{"title":"Mechanistic Learning for Predicting Survival Outcomes in Head and Neck Squamous Cell Carcinoma.","authors":"Kevin Atsou, Anne Auperin, Jôel Guigay, Sébastien Salas, Sebastien Benzekry","doi":"10.1002/psp4.13294","DOIUrl":null,"url":null,"abstract":"<p><p>We employed a mechanistic learning approach, integrating on-treatment tumor kinetics (TK) modeling with various machine learning (ML) models to address the challenge of predicting post-progression survival (PPS)-the duration from the time of documented disease progression to death-and overall survival (OS) in Head and Neck Squamous Cell Carcinoma (HNSCC). We compared the predictive power of model-derived TK parameters versus RECIST and assessed the efficacy of nine TK-OS ML models against conventional survival models. Data from 526 advanced HNSCC patients treated with chemotherapy and cetuximab in the TPExtreme trial were analyzed using a double-exponential model. TK parameters from the first line and maintenance (TKL1) or after four cycles (TK4) were used to predict PPS and post-cycle 4 OS (OS4), combined with 12 baseline parameters. While ML algorithms underperformed compared to the Cox model for PPS, a random survival forest was superior for OS prediction using TK4 and surpassed RECIST-based metrics. This model demonstrated unbiased OS4 prediction, suggesting its potential for improving HNSCC treatment evaluation. Trial Registration: ClinicalTrials.gov identifier: NCT02268695.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13294","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

We employed a mechanistic learning approach, integrating on-treatment tumor kinetics (TK) modeling with various machine learning (ML) models to address the challenge of predicting post-progression survival (PPS)-the duration from the time of documented disease progression to death-and overall survival (OS) in Head and Neck Squamous Cell Carcinoma (HNSCC). We compared the predictive power of model-derived TK parameters versus RECIST and assessed the efficacy of nine TK-OS ML models against conventional survival models. Data from 526 advanced HNSCC patients treated with chemotherapy and cetuximab in the TPExtreme trial were analyzed using a double-exponential model. TK parameters from the first line and maintenance (TKL1) or after four cycles (TK4) were used to predict PPS and post-cycle 4 OS (OS4), combined with 12 baseline parameters. While ML algorithms underperformed compared to the Cox model for PPS, a random survival forest was superior for OS prediction using TK4 and surpassed RECIST-based metrics. This model demonstrated unbiased OS4 prediction, suggesting its potential for improving HNSCC treatment evaluation. Trial Registration: ClinicalTrials.gov identifier: NCT02268695.

预测头颈部鳞状细胞癌生存结果的机制学习。
我们采用了一种机制学习方法,将治疗中肿瘤动力学(TK)模型与各种机器学习(ML)模型相结合,以解决预测头颈部鳞状细胞癌(HNSCC)进展后生存(PPS)(从记录的疾病进展到死亡的持续时间)和总生存(OS)的挑战。我们比较了模型衍生TK参数与RECIST的预测能力,并评估了9种TK- os ML模型与传统生存模型的疗效。在TPExtreme试验中,526例接受化疗和西妥昔单抗治疗的晚期HNSCC患者的数据使用双指数模型进行分析。结合12个基线参数,采用一线和维持期TK参数(TKL1)或四个周期后TK参数(TK4)预测PPS和周期后OS (OS4)。虽然ML算法在PPS方面的表现不如Cox模型,但使用TK4进行OS预测的随机生存森林优于基于recist的指标。该模型显示出无偏倚的OS4预测,表明其具有改善HNSCC治疗评估的潜力。试验注册:ClinicalTrials.gov标识符:NCT02268695。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信