Endothelial CD38-induced endothelial-to-mesenchymal transition is a pivotal driver in pulmonary fibrosis.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Min Hu, Xiao-Hui Guan, Ling-Fang Wang, Hao-Min Xu, Shu-Fen Ke, Qing-Yun Yuan, Hui-Lan Tan, Jie Wu, Guan-Hui Yu, Qi-Ming Huang, Yu Liu, Long Hu, Ke-Yu Deng, Hong-Bo Xin
{"title":"Endothelial CD38-induced endothelial-to-mesenchymal transition is a pivotal driver in pulmonary fibrosis.","authors":"Min Hu, Xiao-Hui Guan, Ling-Fang Wang, Hao-Min Xu, Shu-Fen Ke, Qing-Yun Yuan, Hui-Lan Tan, Jie Wu, Guan-Hui Yu, Qi-Ming Huang, Yu Liu, Long Hu, Ke-Yu Deng, Hong-Bo Xin","doi":"10.1007/s00018-024-05548-x","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD<sup>+</sup>) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence. However, the roles of endothelial CD38 in pulmonary fibrosis remain unknown. In the present study, we observed that the elevated expression of CD38 was related to endothelial-to-mesenchymal transition (EndMT) of lung tissues in IPF patients and bleomycin (BLM)-induced pulmonary fibrosis mice and also in human umbilical vein endothelial cells (HUVECs) treated with BLM. Micro-computed tomography (MCT) and histopathological staining showed that endothelial cell-specific CD38 knockout (CD38<sup>EndKO</sup>) remarkably attenuated BLM-induced pulmonary fibrosis. In addition, CD38<sup>EndKO</sup> significantly inhibited TGFβ-Smad3 pathway-mediated excessive extracellular matrix (ECM), reduced Toll-like receptor4-Myeloid differentiation factor88-Mitogen-activated protein kinases (TLR4-MyD88-MAPK) pathway-mediated endothelial inflammation and suppressed nicotinamide adenine dinucleotide phosphate oxidases1 (NOX1)-mediated oxidative stress. Furthermore, we demonstrated that 3-TYP, a SIRT3-specific inhibitor, markedly reversed the protective effect of HUVECs<sup>CD38KD</sup> cells and 78 C, a CD38-specific inhibitor, on BLM-induced EndMT in HUVECs. Therefore, we concluded that CD38<sup>EndKO</sup> significantly ameliorated BLM-induced pulmonary fibrosis through inhibiting ECM, endothelial inflammation and oxidative stress, further alleviating EndMT in mice. Our findings suggest that endothelial CD38 may be a new therapeutic target for the prevention and treatment of pulmonary fibrosis clinically.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"30"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05548-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD+) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence. However, the roles of endothelial CD38 in pulmonary fibrosis remain unknown. In the present study, we observed that the elevated expression of CD38 was related to endothelial-to-mesenchymal transition (EndMT) of lung tissues in IPF patients and bleomycin (BLM)-induced pulmonary fibrosis mice and also in human umbilical vein endothelial cells (HUVECs) treated with BLM. Micro-computed tomography (MCT) and histopathological staining showed that endothelial cell-specific CD38 knockout (CD38EndKO) remarkably attenuated BLM-induced pulmonary fibrosis. In addition, CD38EndKO significantly inhibited TGFβ-Smad3 pathway-mediated excessive extracellular matrix (ECM), reduced Toll-like receptor4-Myeloid differentiation factor88-Mitogen-activated protein kinases (TLR4-MyD88-MAPK) pathway-mediated endothelial inflammation and suppressed nicotinamide adenine dinucleotide phosphate oxidases1 (NOX1)-mediated oxidative stress. Furthermore, we demonstrated that 3-TYP, a SIRT3-specific inhibitor, markedly reversed the protective effect of HUVECsCD38KD cells and 78 C, a CD38-specific inhibitor, on BLM-induced EndMT in HUVECs. Therefore, we concluded that CD38EndKO significantly ameliorated BLM-induced pulmonary fibrosis through inhibiting ECM, endothelial inflammation and oxidative stress, further alleviating EndMT in mice. Our findings suggest that endothelial CD38 may be a new therapeutic target for the prevention and treatment of pulmonary fibrosis clinically.

内皮细胞cd38诱导的内皮向间质转化是肺纤维化的关键驱动因素。
特发性肺纤维化(IPF)是一种常见的间质性肺疾病,死亡率高。CD38是哺乳动物细胞内烟酰胺腺嘌呤二核苷酸(NAD+)降解的主要酶。有报道称CD38通过促进肺泡上皮细胞衰老参与肺纤维化。然而,内皮细胞CD38在肺纤维化中的作用尚不清楚。在本研究中,我们观察到CD38的表达升高与IPF患者和博来霉素(BLM)诱导的肺纤维化小鼠肺组织内皮到间充质转化(EndMT)有关,也与BLM处理的人脐静脉内皮细胞(HUVECs)有关。显微计算机断层扫描(MCT)和组织病理学染色显示内皮细胞特异性CD38敲除(CD38EndKO)显著减轻blm诱导的肺纤维化。此外,CD38EndKO显著抑制TGFβ-Smad3通路介导的过度细胞外基质(ECM),降低toll样受体4-髓样分化因子88-丝裂原活化蛋白激酶(TLR4-MyD88-MAPK)通路介导的内皮炎症,抑制烟酰胺腺嘌呤二核苷酸磷酸氧化酶1 (NOX1)介导的氧化应激。此外,我们证明了sirt3特异性抑制剂3-TYP显著逆转了HUVECsCD38KD细胞和cd38特异性抑制剂78 C对blm诱导的HUVECs EndMT的保护作用。因此,我们得出结论,CD38EndKO通过抑制ECM、内皮炎症和氧化应激,显著改善blm诱导的肺纤维化,进一步减轻小鼠的EndMT。我们的研究结果提示内皮细胞CD38可能成为临床预防和治疗肺纤维化的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
文献相关原料
公司名称
产品信息
索莱宝
Masson’s Trichrome Stain Kit
索莱宝
HE Stain Kit
索莱宝
Trypsin-EDTA digestion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信