RBM19 promotes the progression of prostate cancer under docetaxel treatment via SNHG21/PIM1 axis.

IF 5.3 2区 医学 Q2 CELL BIOLOGY
Wei Zhuang, Siwei Xu, Qingliu He, Qingfu Su, Heyi Chen, Jiabi Chen, Congming Huang, Zhijiao You
{"title":"RBM19 promotes the progression of prostate cancer under docetaxel treatment via SNHG21/PIM1 axis.","authors":"Wei Zhuang, Siwei Xu, Qingliu He, Qingfu Su, Heyi Chen, Jiabi Chen, Congming Huang, Zhijiao You","doi":"10.1007/s10565-024-09985-z","DOIUrl":null,"url":null,"abstract":"<p><p>RBM family proteins plays the critical role in the progression of numerous tumors. However, whether RBM family proteins involved in prostate cancer (PCa) progression is remain elucidated. In our study, an RNAi screen containing shRNA library targeting 54 members of the RBM family was applied to identify the critical RBM proteins involved in prostate cancer progression under docetaxel treatment, and RBM19 was selected. RBM19 was up-regulated in PCa specimens and correlated with the prognosis and Gleason score of PCa patients. Functionally assays revealed that RBM19 promoted PCa progression under docetaxel treatment both in vivo and in vitro. Mechanistically, RBM19 could bind to LncRNA SNHG21, thereby increased SNHG21 expression through enhancing its stability. Furthermore, SNHG21 bind to PIM1 proteins and prevented it from ubiquitin-protease dependent degradation and ultimately enhancing mitochondrial homeostasis. Overall, our study indicates the RBM19/SNHG21/PIM1 axis may be the encouraging target for docetaxel-tolerance PCa treatment.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"19"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09985-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RBM family proteins plays the critical role in the progression of numerous tumors. However, whether RBM family proteins involved in prostate cancer (PCa) progression is remain elucidated. In our study, an RNAi screen containing shRNA library targeting 54 members of the RBM family was applied to identify the critical RBM proteins involved in prostate cancer progression under docetaxel treatment, and RBM19 was selected. RBM19 was up-regulated in PCa specimens and correlated with the prognosis and Gleason score of PCa patients. Functionally assays revealed that RBM19 promoted PCa progression under docetaxel treatment both in vivo and in vitro. Mechanistically, RBM19 could bind to LncRNA SNHG21, thereby increased SNHG21 expression through enhancing its stability. Furthermore, SNHG21 bind to PIM1 proteins and prevented it from ubiquitin-protease dependent degradation and ultimately enhancing mitochondrial homeostasis. Overall, our study indicates the RBM19/SNHG21/PIM1 axis may be the encouraging target for docetaxel-tolerance PCa treatment.

RBM19通过SNHG21/PIM1轴促进多西紫杉醇治疗下前列腺癌的进展。
RBM家族蛋白在许多肿瘤的进展中起着关键作用。然而,RBM家族蛋白是否参与前列腺癌(PCa)的进展尚不清楚。在我们的研究中,我们利用含有shRNA文库的RNAi筛选,针对54个RBM家族成员,鉴定多西紫杉醇治疗下参与前列腺癌进展的关键RBM蛋白,并选择了RBM19。RBM19在PCa标本中表达上调,与PCa患者预后及Gleason评分相关。功能分析显示,RBM19在体内和体外均促进了多西他赛治疗下PCa的进展。机制上,RBM19可以结合LncRNA SNHG21,从而通过增强SNHG21的稳定性来增加SNHG21的表达。此外,SNHG21与PIM1蛋白结合,阻止其依赖泛素蛋白酶的降解,最终增强线粒体稳态。总的来说,我们的研究表明RBM19/SNHG21/PIM1轴可能是多西他赛耐受PCa治疗的令人鼓舞的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信