Fengqi Zhou, Jincheng Tao, Huiqing Gou, Shuheng Liu, Dong Yu, Junxia Zhang, Jianxiong Ji, Ning Lin, Yingyi Wang
{"title":"FSTL1 sustains glioma stem cell stemness and promotes immunosuppressive macrophage polarization in glioblastoma.","authors":"Fengqi Zhou, Jincheng Tao, Huiqing Gou, Shuheng Liu, Dong Yu, Junxia Zhang, Jianxiong Ji, Ning Lin, Yingyi Wang","doi":"10.1016/j.canlet.2024.217400","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) within the tumor microenvironment (TME) play a crucial role in glioblastoma (GBM) progression by interacting with glioma stem cells (GSCs). These interactions lead to the polarization of TAMs toward an M2 phenotype, which, in turn, enhances the stem-like traits and malignant progression of GSCs. Our study shows that FSTL1, a protein released by GSCs, is significantly elevated in gliomas and linked to the progression of the disease. By suppressing FSTL1 in a mouse model, we observed reduced tumor growth and a decrease in M2 macrophages. In vitro studies show that FSTL1 from GSCs promotes M2 polarization and infiltration. Importantly, GSCs utilize autocrine FSTL1 to interact with TLR2, which inhibits the endocytosis-lysosomal degradation pathway mediated by EGFR, resulting in the activation of the PI3K-AKT signaling pathway that is critical for maintaining their self-renewal. These findings underscore the importance of FSTL1 in GSC maintenance and M2 macrophage polarization, suggesting that interventions targeting the FSTL1/TLR2 pathway could provide a novel therapeutic approach for GBM patients.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"611 ","pages":"217400"},"PeriodicalIF":9.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2024.217400","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor-associated macrophages (TAMs) within the tumor microenvironment (TME) play a crucial role in glioblastoma (GBM) progression by interacting with glioma stem cells (GSCs). These interactions lead to the polarization of TAMs toward an M2 phenotype, which, in turn, enhances the stem-like traits and malignant progression of GSCs. Our study shows that FSTL1, a protein released by GSCs, is significantly elevated in gliomas and linked to the progression of the disease. By suppressing FSTL1 in a mouse model, we observed reduced tumor growth and a decrease in M2 macrophages. In vitro studies show that FSTL1 from GSCs promotes M2 polarization and infiltration. Importantly, GSCs utilize autocrine FSTL1 to interact with TLR2, which inhibits the endocytosis-lysosomal degradation pathway mediated by EGFR, resulting in the activation of the PI3K-AKT signaling pathway that is critical for maintaining their self-renewal. These findings underscore the importance of FSTL1 in GSC maintenance and M2 macrophage polarization, suggesting that interventions targeting the FSTL1/TLR2 pathway could provide a novel therapeutic approach for GBM patients.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.