{"title":"Theoretical Design of a Single Cu Atom Supported on 1T-WS2/Graphene Catalyst for Electrocatalytic Nitrate Reduction to Ammonia.","authors":"Y X He, Zhili Wang, Q Jiang","doi":"10.1002/cphc.202400788","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical reduction of nitrate to ammonia (NO3RR) offers a promising strategy for renewable ammonia (NH3) synthesis and wastewater treatment, but still suffers from limited activity and NH3 selectivity due to the lack of effective electrocatalyst. Here, we perform a four-steps screening strategy to screen high performance NO3RR catalyst by density functional theory calculations using 23 single transition metals atom doped on 1T-WS2/graphene (TM@1T-WS2/graphene) as candidates. The results show that Cu@1T-WS2/graphene exhibits the highest NO3RR activity among 23 candidates with a low rate determining step energy barrier of 0.12 eV, which is much lower than that of the most of recently reported NO3RR catalysts. Moreover, the Cu@1T-WS2/graphene also possesses excellent NH3 selectivity by suppressing competing hydrogen evolution reaction. This work provides a new avenue for the design of novel effective NO3RR catalysts for practical application.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400788"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400788","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical reduction of nitrate to ammonia (NO3RR) offers a promising strategy for renewable ammonia (NH3) synthesis and wastewater treatment, but still suffers from limited activity and NH3 selectivity due to the lack of effective electrocatalyst. Here, we perform a four-steps screening strategy to screen high performance NO3RR catalyst by density functional theory calculations using 23 single transition metals atom doped on 1T-WS2/graphene (TM@1T-WS2/graphene) as candidates. The results show that Cu@1T-WS2/graphene exhibits the highest NO3RR activity among 23 candidates with a low rate determining step energy barrier of 0.12 eV, which is much lower than that of the most of recently reported NO3RR catalysts. Moreover, the Cu@1T-WS2/graphene also possesses excellent NH3 selectivity by suppressing competing hydrogen evolution reaction. This work provides a new avenue for the design of novel effective NO3RR catalysts for practical application.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.