Identification of the therapeutic potential of novel TIGIT/PVR interaction blockers based advanced computational techniques and experimental validation
Xudong Lü , Xiyu Wei , Chenyu Wang , Mengjia Tang , Yuanyuan Jin , Shuai Fan , Zhaoyong Yang
{"title":"Identification of the therapeutic potential of novel TIGIT/PVR interaction blockers based advanced computational techniques and experimental validation","authors":"Xudong Lü , Xiyu Wei , Chenyu Wang , Mengjia Tang , Yuanyuan Jin , Shuai Fan , Zhaoyong Yang","doi":"10.1016/j.bpc.2024.107383","DOIUrl":null,"url":null,"abstract":"<div><div>The inhibition of the TIGIT/PVR interaction demonstrates considerable anticancer properties by enhancing the cytotoxic activity of natural killer (NK) and CD8+ T cells. However, the development of small molecule inhibitors that target TIGIT is currently limited. In this study, small molecules with the capacity to bind TIGIT and block the TIGIT/PVR interaction were screened through an advanced computational process, subsequently confirmed by blocking assays. Combined machine learning model XGBOOST and centroid-based molecular docking were employed to expeditiously exclude negative molecules, thereby reducing the chemical space. Subsequently, a blockade assay targeting the TIGIT/PVR interaction was conducted on 14 candidate molecules along with positive control, wherein compound MCULE-5547257859 exhibited the most potent inhibitory effect. Molecular dynamics simulations and binding free energy analyses revealed that compound MCULE-5547257859 possesses a thermodynamically stable conformation, indicative of a stronger binding affinity to TIGIT. In conclusion, our investigation has delineated that compound MCULE-5547257859 effectively impedes the TIGIT/PVR interaction, thereby offering a novel therapeutic modality for oncology.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107383"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224002126","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inhibition of the TIGIT/PVR interaction demonstrates considerable anticancer properties by enhancing the cytotoxic activity of natural killer (NK) and CD8+ T cells. However, the development of small molecule inhibitors that target TIGIT is currently limited. In this study, small molecules with the capacity to bind TIGIT and block the TIGIT/PVR interaction were screened through an advanced computational process, subsequently confirmed by blocking assays. Combined machine learning model XGBOOST and centroid-based molecular docking were employed to expeditiously exclude negative molecules, thereby reducing the chemical space. Subsequently, a blockade assay targeting the TIGIT/PVR interaction was conducted on 14 candidate molecules along with positive control, wherein compound MCULE-5547257859 exhibited the most potent inhibitory effect. Molecular dynamics simulations and binding free energy analyses revealed that compound MCULE-5547257859 possesses a thermodynamically stable conformation, indicative of a stronger binding affinity to TIGIT. In conclusion, our investigation has delineated that compound MCULE-5547257859 effectively impedes the TIGIT/PVR interaction, thereby offering a novel therapeutic modality for oncology.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.