EDCLoc: a prediction model for mRNA subcellular localization using improved focal loss to address multi-label class imbalance.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yu Deng, Jianhua Jia, Mengyue Yi
{"title":"EDCLoc: a prediction model for mRNA subcellular localization using improved focal loss to address multi-label class imbalance.","authors":"Yu Deng, Jianhua Jia, Mengyue Yi","doi":"10.1186/s12864-024-11173-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this. These methods face the problem of class imbalance in multi-label classification, causing models to favor majority classes and overlook minority classes during training. Additionally, traditional feature extraction methods have high computational costs, incomplete features, and may lead to the loss of critical information. On the other hand, deep learning methods face challenges related to hardware performance and training time when handling complex sequences. They may suffer from the curse of dimensionality and overfitting problems. Therefore, there is an urgent need for more efficient and accurate prediction models.</p><p><strong>Results: </strong>To address these issues, we propose a multi-label classifier, EDCLoc, for predicting mRNA subcellular localization. EDCLoc reduces training pressure through a stepwise pooling strategy and applies grouped convolution blocks of varying sizes at different levels, combined with residual connections, to achieve efficient feature extraction and gradient propagation. The model employs global max pooling at the end to further reduce feature dimensions and highlight key features. To tackle class imbalance, we improved the focal loss function to enhance the model's focus on minority classes. Evaluation results show that EDCLoc outperforms existing methods in most subcellular regions. Additionally, the position weight matrix extracted by multi-scale CNN filters can match known RNA-binding protein motifs, demonstrating EDCLoc's effectiveness in capturing key sequence features.</p><p><strong>Conclusions: </strong>EDCLoc outperforms existing prediction tools in most subcellular regions and effectively mitigates class imbalance issues in multi-label classification. These advantages make EDCLoc a reliable choice for multi-label mRNA subcellular localization. The dataset and source code used in this study are available at https://github.com/DellCode233/EDCLoc .</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1252"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674359/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11173-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this. These methods face the problem of class imbalance in multi-label classification, causing models to favor majority classes and overlook minority classes during training. Additionally, traditional feature extraction methods have high computational costs, incomplete features, and may lead to the loss of critical information. On the other hand, deep learning methods face challenges related to hardware performance and training time when handling complex sequences. They may suffer from the curse of dimensionality and overfitting problems. Therefore, there is an urgent need for more efficient and accurate prediction models.

Results: To address these issues, we propose a multi-label classifier, EDCLoc, for predicting mRNA subcellular localization. EDCLoc reduces training pressure through a stepwise pooling strategy and applies grouped convolution blocks of varying sizes at different levels, combined with residual connections, to achieve efficient feature extraction and gradient propagation. The model employs global max pooling at the end to further reduce feature dimensions and highlight key features. To tackle class imbalance, we improved the focal loss function to enhance the model's focus on minority classes. Evaluation results show that EDCLoc outperforms existing methods in most subcellular regions. Additionally, the position weight matrix extracted by multi-scale CNN filters can match known RNA-binding protein motifs, demonstrating EDCLoc's effectiveness in capturing key sequence features.

Conclusions: EDCLoc outperforms existing prediction tools in most subcellular regions and effectively mitigates class imbalance issues in multi-label classification. These advantages make EDCLoc a reliable choice for multi-label mRNA subcellular localization. The dataset and source code used in this study are available at https://github.com/DellCode233/EDCLoc .

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信