Sina Christoffers, Nina Wichert, Elena Wiebe, Maria Leilani Torres-Mapa, Madeleine Goblet, Jennifer Harre, Odett Kaiser, Marc-Nils Wahalla, Holger Blume, Alexander Heisterkamp, Athanasia Warnecke, Cornelia Blume
{"title":"Blue Light-Induced, Dosed Protein Expression of Active BDNF in Human Cells Using the Optogenetic CRY2/CIB System","authors":"Sina Christoffers, Nina Wichert, Elena Wiebe, Maria Leilani Torres-Mapa, Madeleine Goblet, Jennifer Harre, Odett Kaiser, Marc-Nils Wahalla, Holger Blume, Alexander Heisterkamp, Athanasia Warnecke, Cornelia Blume","doi":"10.1002/biot.202400384","DOIUrl":null,"url":null,"abstract":"<p>The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells. Transfection with three plasmids, encoding for the optogenetic system and the target, as well as illumination protocols were optimized with luciferase as a reporter to achieve the highest protein expression in human embryonic kidney cells 293. Illumination was performed either with a light-emitting diode or with a scanning laser setup. The optimized protocols were applied for the production of BDNF. We could demonstrate a 64.7-fold increase of BNDF expression upon light induction compared to the basal level. Light-induced BDNF was biologically active and enhanced survival and neurite growth of spiral ganglion neurons. The optogenetic approach can be transferred to autologous cell systems, such as bone marrow-derived mesenchymal stem cells, and thus represents the first optogenetic neurotrophic therapy for the inner ear.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells. Transfection with three plasmids, encoding for the optogenetic system and the target, as well as illumination protocols were optimized with luciferase as a reporter to achieve the highest protein expression in human embryonic kidney cells 293. Illumination was performed either with a light-emitting diode or with a scanning laser setup. The optimized protocols were applied for the production of BDNF. We could demonstrate a 64.7-fold increase of BNDF expression upon light induction compared to the basal level. Light-induced BDNF was biologically active and enhanced survival and neurite growth of spiral ganglion neurons. The optogenetic approach can be transferred to autologous cell systems, such as bone marrow-derived mesenchymal stem cells, and thus represents the first optogenetic neurotrophic therapy for the inner ear.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.