Oscillatory Motion of a Camphor Disk on a Water Phase with an Ionic Liquid Sensitive to Transition Metal Ions.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-01-09 Epub Date: 2024-12-26 DOI:10.1021/acs.jpcb.4c07310
Hua Er, Yukang Bai, Muneyuki Matsuo, Satoshi Nakata
{"title":"Oscillatory Motion of a Camphor Disk on a Water Phase with an Ionic Liquid Sensitive to Transition Metal Ions.","authors":"Hua Er, Yukang Bai, Muneyuki Matsuo, Satoshi Nakata","doi":"10.1021/acs.jpcb.4c07310","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated oscillatory motion of a camphor disk floating on water containing 5 mM hexylethylenediaminium trifluoroacetate (HHexen-TFA) as an ionic liquid (IL). The frequency of the oscillatory motion increased with increasing concentrations of the transition metal ions Cu<sup>2+</sup> and Ni<sup>2+</sup> but was insensitive to Na<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>, the typical metal ions in the water phase. The surface tension of the water phase containing 5 mM HHexen-TFA also increased with increasing concentrations of Cu<sup>2+</sup> and Ni<sup>2+</sup> but was insensitive to Na<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>. Based on density functional theory, metal-ion species-dependent frequency response is discussed with regard to surface tension as the force of self-propulsion and complex formation between HHexen-TFA and metal ions. These results suggest that complex formation between the transition metal ions (Cu<sup>2+</sup>, Ni<sup>2+</sup>) and the ethylenediamine group in the IL increases the surface tension around the camphor disk, resulting in an increase in the frequency of oscillatory motion with increasing concentrations of Cu<sup>2+</sup> or Ni<sup>2+</sup>. The present study suggests that the nature of self-propulsion can be created by complexation, which changes the force of self-propulsion.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"592-597"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07310","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated oscillatory motion of a camphor disk floating on water containing 5 mM hexylethylenediaminium trifluoroacetate (HHexen-TFA) as an ionic liquid (IL). The frequency of the oscillatory motion increased with increasing concentrations of the transition metal ions Cu2+ and Ni2+ but was insensitive to Na+, Ca2+, and Mg2+, the typical metal ions in the water phase. The surface tension of the water phase containing 5 mM HHexen-TFA also increased with increasing concentrations of Cu2+ and Ni2+ but was insensitive to Na+, Ca2+, and Mg2+. Based on density functional theory, metal-ion species-dependent frequency response is discussed with regard to surface tension as the force of self-propulsion and complex formation between HHexen-TFA and metal ions. These results suggest that complex formation between the transition metal ions (Cu2+, Ni2+) and the ethylenediamine group in the IL increases the surface tension around the camphor disk, resulting in an increase in the frequency of oscillatory motion with increasing concentrations of Cu2+ or Ni2+. The present study suggests that the nature of self-propulsion can be created by complexation, which changes the force of self-propulsion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信