Laser-Induced Photoheating of an Aqueous Suspension of Titanium Nitride Nanoparticles under Irradiation with a Synchronized Scanning near-IR Laser Beam

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
A. A. Bubnov, V. A. Oleshchenko, V. Yu. Timoshenko
{"title":"Laser-Induced Photoheating of an Aqueous Suspension of Titanium Nitride Nanoparticles under Irradiation with a Synchronized Scanning near-IR Laser Beam","authors":"A. A. Bubnov,&nbsp;V. A. Oleshchenko,&nbsp;V. Yu. Timoshenko","doi":"10.3103/S106833562460116X","DOIUrl":null,"url":null,"abstract":"<p>Dynamic photohyperthermia is a method based on synchronization of a moving fluid flow and a laser beam. In this paper, the method is simulated and experimentally tested for a flow of an aqueous suspension of titanium nitride (TiN) nanoparticles (NPs) irradiated with continuous-wave laser radiation in the spectral absorption region of the NPs. A model is constructed that takes into account optical and photothermal effects associated with TiN NPs, i.e., scattering, absorption, and heat exchange in water. A semiconductor laser diode with a wavelength of 808 nm and a power of 0.35 W is used for photoheating of an aqueous suspension of NPs. It is found that the magnitude of photoheating of the aqueous NP suspension flow increases with synchronization of the scanning laser beam and moving flow of TiN NPs.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 11","pages":"432 - 438"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Lebedev Physics Institute","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S106833562460116X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic photohyperthermia is a method based on synchronization of a moving fluid flow and a laser beam. In this paper, the method is simulated and experimentally tested for a flow of an aqueous suspension of titanium nitride (TiN) nanoparticles (NPs) irradiated with continuous-wave laser radiation in the spectral absorption region of the NPs. A model is constructed that takes into account optical and photothermal effects associated with TiN NPs, i.e., scattering, absorption, and heat exchange in water. A semiconductor laser diode with a wavelength of 808 nm and a power of 0.35 W is used for photoheating of an aqueous suspension of NPs. It is found that the magnitude of photoheating of the aqueous NP suspension flow increases with synchronization of the scanning laser beam and moving flow of TiN NPs.

Abstract Image

同步扫描近红外激光束辐照下氮化钛纳米颗粒水悬浮液的激光诱导光加热
动态光热疗法是一种基于运动流体流动和激光束同步的方法。本文对连续波激光照射下氮化钛纳米颗粒水悬浮液在纳米颗粒光谱吸收区的流动进行了模拟和实验测试。建立了一个模型,该模型考虑了与TiN NPs相关的光学和光热效应,即散射、吸收和水中的热交换。利用波长为808 nm、功率为0.35 W的半导体激光二极管对NPs的水相悬浮液进行光加热。研究发现,随着扫描激光束与TiN纳米粒子运动的同步,纳米粒子悬浮流的光加热幅度增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of the Lebedev Physics Institute
Bulletin of the Lebedev Physics Institute PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
25.00%
发文量
41
审稿时长
6-12 weeks
期刊介绍: Bulletin of the Lebedev Physics Institute is an international peer reviewed journal that publishes results of new original experimental and theoretical studies on all topics of physics: theoretical physics; atomic and molecular physics; nuclear physics; optics; lasers; condensed matter; physics of solids; biophysics, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信