{"title":"Maurer–Cartan methods in perturbative quantum mechanics","authors":"A. S. Losev, T. V. Sulimov","doi":"10.1134/S0040577924120109","DOIUrl":null,"url":null,"abstract":"<p> We reformulate the time-independent Schrödinger equation as a Maurer–Cartan equation on the superspace of eigensystems of the former equation. We then twist the differential such that its cohomology becomes the space of solutions with a fixed energy. A perturbation of the Hamiltonian corresponds to a deformation of the twisted differential, leading to a simple recursive relation for the eigenvalue and eigenfunction corrections. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 3","pages":"2155 - 2164"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924120109","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We reformulate the time-independent Schrödinger equation as a Maurer–Cartan equation on the superspace of eigensystems of the former equation. We then twist the differential such that its cohomology becomes the space of solutions with a fixed energy. A perturbation of the Hamiltonian corresponds to a deformation of the twisted differential, leading to a simple recursive relation for the eigenvalue and eigenfunction corrections.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.