Effect of Molecular Weight of Chitosan on Tea Tree Essential Oil-Loaded Nanoparticles: Formation, Characteristics, and Application in Preservation of Mini-Cucumbers

IF 2.8 4区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Gaofeng Yuan, Qi Zhou, Shan Wang, Haiyan Sun, Yangguang Wang
{"title":"Effect of Molecular Weight of Chitosan on Tea Tree Essential Oil-Loaded Nanoparticles: Formation, Characteristics, and Application in Preservation of Mini-Cucumbers","authors":"Gaofeng Yuan,&nbsp;Qi Zhou,&nbsp;Shan Wang,&nbsp;Haiyan Sun,&nbsp;Yangguang Wang","doi":"10.1007/s11483-024-09923-w","DOIUrl":null,"url":null,"abstract":"<div><p>Chitosan nanoparticles loaded with tea tree essential oil (TTO-CHNPs) were fabricated and the effects of chitosan molecular weight (MW) (50, 200, and 500 kDa) on the physicochemical properties and biological activities of TTO-CHNPs were investigated. TTO was successfully encapsulated into chitosan nanoparticles with encapsulation efficiency (EE) ranging from 74.15 to 80.94%. TTO encapsulation significantly improved the antioxidant and antimicrobial activities of TTO-CHNPs. The chitosan MW significantly affected the antioxidant and antimicrobial activities of TTO-CHNPs and the preservation effect for mini-cucumbers coated with TTO-CHNPs. Among TTO-CHNPs with different MW of chitosan, those prepared using low MW of chitosan (TTO-LCHNPs) exhibited the highest EE of TTO, the greatest antibacterial activity against <i>Staphylococcus aureus</i> and antifungal activity against <i>Botrytis cinerea in vitro</i>, and the highest reduction in disease incidence and severity of <i>B. cinerea</i> inoculated mini-cucumbers. TTO-LCHNPs coating presented the best preservation effect on mini-cucumbers, extending their shelf life by 9 days.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09923-w","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chitosan nanoparticles loaded with tea tree essential oil (TTO-CHNPs) were fabricated and the effects of chitosan molecular weight (MW) (50, 200, and 500 kDa) on the physicochemical properties and biological activities of TTO-CHNPs were investigated. TTO was successfully encapsulated into chitosan nanoparticles with encapsulation efficiency (EE) ranging from 74.15 to 80.94%. TTO encapsulation significantly improved the antioxidant and antimicrobial activities of TTO-CHNPs. The chitosan MW significantly affected the antioxidant and antimicrobial activities of TTO-CHNPs and the preservation effect for mini-cucumbers coated with TTO-CHNPs. Among TTO-CHNPs with different MW of chitosan, those prepared using low MW of chitosan (TTO-LCHNPs) exhibited the highest EE of TTO, the greatest antibacterial activity against Staphylococcus aureus and antifungal activity against Botrytis cinerea in vitro, and the highest reduction in disease incidence and severity of B. cinerea inoculated mini-cucumbers. TTO-LCHNPs coating presented the best preservation effect on mini-cucumbers, extending their shelf life by 9 days.

壳聚糖分子量对茶树精油纳米颗粒的影响:形成、特性及其在小黄瓜保鲜中的应用
制备了负载茶树精油的壳聚糖纳米颗粒(TTO-CHNPs),并研究了分子量(MW)(50、200和500 kDa)对其理化性质和生物活性的影响。将TTO成功包封成壳聚糖纳米颗粒,包封率为74.15% ~ 80.94%。TTO包封显著提高了TTO- chnps的抗氧化和抗菌活性。壳聚糖分子量显著影响了TTO-CHNPs的抗氧化和抑菌活性,并影响了TTO-CHNPs包被黄瓜的保鲜效果。在不同分子量的壳聚糖中,低分子量壳聚糖制备的TTO- chnps (TTO- lchnps)的体外抗菌活性最高,对金黄色葡萄球菌和灰霉病菌的体外抑菌活性最高,对接种灰葡萄球菌的迷你黄瓜的发病率和严重程度降低幅度最大。TTO-LCHNPs涂层对迷你黄瓜的保鲜效果最好,可延长保质期9天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Biophysics
Food Biophysics 工程技术-食品科技
CiteScore
5.80
自引率
3.30%
发文量
58
审稿时长
1 months
期刊介绍: Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell. A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信