Jiaqing He;Yihan Zhu;Bing Hua;Zhihuo Xu;Yongwei Zhang;Liu Chu;Quan Shi;Robin Braun;Jiajia Shi
{"title":"Non-Motorized Lane Target Behavior Classification Based on Millimeter Wave Radar With P-Mrca Convolutional Neural Network","authors":"Jiaqing He;Yihan Zhu;Bing Hua;Zhihuo Xu;Yongwei Zhang;Liu Chu;Quan Shi;Robin Braun;Jiajia Shi","doi":"10.1109/TBIOM.2024.3428577","DOIUrl":null,"url":null,"abstract":"In the fields of road regulation and road safety, the classification of target behaviors for non-motorized lanes is of great significance. However, due to the influence of adverse weather and lighting conditions on the recognition efficiency, we use radar to perform target recognition on non-motorized lanes to cope with the challenges caused by frequent traffic accidents on non-motorized lanes. In this paper, a classification and recognition method for non-motorized lane target behavior is proposed. Firstly, a radar data acquisition system is constructed to extract the micro-Doppler features of the target. Then, in view of the shortcomings of traditional deep learning networks, this paper proposes a multi-scale residual channel attention mechanism that can better perform multi-scale feature extraction and adds it to the convolutional neural network (CNN) model to construct a multi-scale residual channel attention network (MrcaNet), which can identify and classify target behaviors specific to non-motorized lanes. In order to better combine the feature information contained in the high-level features and the low-level features, MrcaNet was combined with the feature pyramid structure, and a more efficient network model feature pyramid-multi-scale residual channel attention network (P-MrcaNet) was designed. The results show that the model has the best scores on classification indexes such as accuracy, precision, recall rate, F1 value and Kappa coefficient, which are about 10% higher than traditional deep learning methods. The classification effect of this method not only performs well on this paper’s dataset, but also has good adaptability on public datasets.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"7 1","pages":"71-81"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10599204/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the fields of road regulation and road safety, the classification of target behaviors for non-motorized lanes is of great significance. However, due to the influence of adverse weather and lighting conditions on the recognition efficiency, we use radar to perform target recognition on non-motorized lanes to cope with the challenges caused by frequent traffic accidents on non-motorized lanes. In this paper, a classification and recognition method for non-motorized lane target behavior is proposed. Firstly, a radar data acquisition system is constructed to extract the micro-Doppler features of the target. Then, in view of the shortcomings of traditional deep learning networks, this paper proposes a multi-scale residual channel attention mechanism that can better perform multi-scale feature extraction and adds it to the convolutional neural network (CNN) model to construct a multi-scale residual channel attention network (MrcaNet), which can identify and classify target behaviors specific to non-motorized lanes. In order to better combine the feature information contained in the high-level features and the low-level features, MrcaNet was combined with the feature pyramid structure, and a more efficient network model feature pyramid-multi-scale residual channel attention network (P-MrcaNet) was designed. The results show that the model has the best scores on classification indexes such as accuracy, precision, recall rate, F1 value and Kappa coefficient, which are about 10% higher than traditional deep learning methods. The classification effect of this method not only performs well on this paper’s dataset, but also has good adaptability on public datasets.