{"title":"DSTSPYN: a dynamic spatial-temporal similarity pyramid network for traffic flow prediction","authors":"Xing Wang, Feifei Chen, Biao Jin, Mingwei Lin, Fumin Zou, Ruihao Zeng","doi":"10.1007/s10489-024-06198-z","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic flow prediction plays a crucial role in intelligent transportation systems as it enables effective control and management of urban traffic. However, existing methods that based on Graph Convolutional Networks (GCNs) primarily utilize local neighborhood information for message passing, resulting in limited perception of global structures. Additionally, it is also a challenge to extract spatial-temporal similarity features due to the constraints of graph structures. To address these issues, we propose a novel traffic flow prediction model based on Dynamic Spatial-Temporal Similarity Pyramid Network (DSTSPYN). Our model employs a spatial-temporal pyramid architecture, which dynamically adjusts the weights of central, edge, and global spatial-temporal features using an enhanced attention mechanism. Furthermore, it captures dynamic temporal dependencies at different scales through pyramid gated convolution. Meanwhile, the spatial similarity features of different time steps can be extracted through the spatial-temporal global similarity (STGS) module. We evaluate our model on four public transportation datasets and demonstrate that the DSTSPYN model outperforms several baseline methods in terms of prediction accuracy. It effectively captures the dynamic spatial-temporal correlations of the road network and edge node features, making it well-suited for long-term traffic flow prediction.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-024-06198-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06198-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic flow prediction plays a crucial role in intelligent transportation systems as it enables effective control and management of urban traffic. However, existing methods that based on Graph Convolutional Networks (GCNs) primarily utilize local neighborhood information for message passing, resulting in limited perception of global structures. Additionally, it is also a challenge to extract spatial-temporal similarity features due to the constraints of graph structures. To address these issues, we propose a novel traffic flow prediction model based on Dynamic Spatial-Temporal Similarity Pyramid Network (DSTSPYN). Our model employs a spatial-temporal pyramid architecture, which dynamically adjusts the weights of central, edge, and global spatial-temporal features using an enhanced attention mechanism. Furthermore, it captures dynamic temporal dependencies at different scales through pyramid gated convolution. Meanwhile, the spatial similarity features of different time steps can be extracted through the spatial-temporal global similarity (STGS) module. We evaluate our model on four public transportation datasets and demonstrate that the DSTSPYN model outperforms several baseline methods in terms of prediction accuracy. It effectively captures the dynamic spatial-temporal correlations of the road network and edge node features, making it well-suited for long-term traffic flow prediction.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.