Levi Classes of Quasivarieties of Nilpotent Groups of Class at Most Two

IF 0.4 3区 数学 Q4 LOGIC
S. A. Shakhova
{"title":"Levi Classes of Quasivarieties of Nilpotent Groups of Class at Most Two","authors":"S. A. Shakhova","doi":"10.1007/s10469-024-09761-2","DOIUrl":null,"url":null,"abstract":"<p>A Levi class <span>\\(L\\left(\\mathcal{M}\\right)\\)</span> generated by a class <span>\\(\\left(\\mathcal{M}\\right)\\)</span> of groups is the class of all groups in which the normal closure of every cyclic subgroup belongs to <span>\\(\\left(\\mathcal{M}\\right)\\)</span>. Let p be a prime and <i>p</i> ≠ 2, let <i>H</i><sub><i>p</i></sub> be a free group of rank 2 in the variety of nilpotent groups of class at most 2 with commutator subgroup of exponent <i>p</i>, and let <i>qH</i><sub><i>p</i></sub> be the quasivariety generated by the group <i>H</i><sub><i>p</i></sub>. It is shown that there exists a set of quasivarieties <span>\\(\\mathcal{M}\\)</span> of cardinality continuum such that <span>\\(L\\left(\\mathcal{M}\\right)\\)</span> = <i>L</i>(<i>qH</i><sub><i>p</i></sub>). Let <i>s</i> be a natural number, <i>s</i> ≥ 2. We specify a system of quasi-identities defining <i>L</i>(<i>q</i>(<i>H</i><sub><i>p</i></sub>, <span>\\({Z}_{{p}^{s}}\\)</span>)), and prove that there exists a set of quasivarieties <span>\\(\\mathcal{M}\\)</span> of cardinality continuum such that <span>\\(L\\left(\\mathcal{M}\\right)\\)</span> = <i>L</i>(<i>q</i>(<i>H</i><sub><i>p</i></sub>, <span>\\({Z}_{{p}^{s}}\\)</span>)), where <span>\\({Z}_{{p}^{s}}\\)</span> is a cyclic group of order <i>p</i><sup><i>s</i></sup>; <i>q</i>(<i>H</i><sub><i>p</i></sub>, <span>\\({Z}_{{p}^{s}}\\)</span>) is the quasivariety generated by the groups <i>H</i><sub><i>p</i></sub> and <span>\\({Z}_{{p}^{s}}.\\)</span></p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"62 6","pages":"501 - 515"},"PeriodicalIF":0.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-024-09761-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

A Levi class \(L\left(\mathcal{M}\right)\) generated by a class \(\left(\mathcal{M}\right)\) of groups is the class of all groups in which the normal closure of every cyclic subgroup belongs to \(\left(\mathcal{M}\right)\). Let p be a prime and p ≠ 2, let Hp be a free group of rank 2 in the variety of nilpotent groups of class at most 2 with commutator subgroup of exponent p, and let qHp be the quasivariety generated by the group Hp. It is shown that there exists a set of quasivarieties \(\mathcal{M}\) of cardinality continuum such that \(L\left(\mathcal{M}\right)\) = L(qHp). Let s be a natural number, s ≥ 2. We specify a system of quasi-identities defining L(q(Hp, \({Z}_{{p}^{s}}\))), and prove that there exists a set of quasivarieties \(\mathcal{M}\) of cardinality continuum such that \(L\left(\mathcal{M}\right)\) = L(q(Hp, \({Z}_{{p}^{s}}\))), where \({Z}_{{p}^{s}}\) is a cyclic group of order ps; q(Hp, \({Z}_{{p}^{s}}\)) is the quasivariety generated by the groups Hp and \({Z}_{{p}^{s}}.\)

最多两个类的幂零群的拟变异的李维类
由群的一个类\(\left(\mathcal{M}\right)\)生成的Levi类\(L\left(\mathcal{M}\right)\)是每个循环子群的正常闭包属于\(\left(\mathcal{M}\right)\)的所有群的类。设p为素数且p≠2,设Hp为指数为p的对易子群的最多为2类的幂零群的群中秩为2的自由群,设qHp为群Hp生成的拟变。证明了存在一组基数连续体的拟变种\(\mathcal{M}\),使得\(L\left(\mathcal{M}\right)\) = L(qHp)。设s为自然数,s≥2。我们指定了一个定义L(q(Hp, \({Z}_{{p}^{s}}\)))的拟恒等式,并证明了存在一组集集\(\mathcal{M}\)的基连续体使得\(L\left(\mathcal{M}\right)\) = L(q(Hp, \({Z}_{{p}^{s}}\))),其中\({Z}_{{p}^{s}}\)是一个ps阶的循环群;q(Hp, \({Z}_{{p}^{s}}\))是由Hp和群生成的准变种 \({Z}_{{p}^{s}}.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信