Electromechanical Coupling Characteristics of Functionally Graded Piezoelectric Ceramic Beam

IF 0.6 4区 工程技术 Q4 MECHANICS
L. Y. Yang, C. C. Du
{"title":"Electromechanical Coupling Characteristics of Functionally Graded Piezoelectric Ceramic Beam","authors":"L. Y. Yang,&nbsp;C. C. Du","doi":"10.1134/S0025654424604610","DOIUrl":null,"url":null,"abstract":"<p>The tremendous attention of researchers has been attracted to the unusual properties of piezoelectric ceramic materials. A semi-analytical approach to estimate the electromechanical coupling characteristics of multilayered functionally graded piezoelectric ceramic beams with different boundary conditions is presented. The state space method is formulated to the electroelastic theory to derive the state equations for ceramic beams along the thickness direction. The mixed supported boundary conditions are represented by means of the displacement function and Fourier series expansions, respectively. A global propagator matrix is used to connect the field variables at the internal interface to those at the external interface for the whole structure. Governing equations of the models with geometrical nonlinearity are solved using the secant method. Numerical examples show the correctness of the proposed method by finite element model and the influence of the functional gradient index factors η, different boundary conditions, and loading voltage on the static behavior of piezoelectric ceramic beams. Our results show that the modified state space approach overcomes the disadvantage of the inability to address clamped supported and free boundary conditions. η possesses the ability to improve interfacial stress discontinuities.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 4","pages":"2424 - 2439"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424604610","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The tremendous attention of researchers has been attracted to the unusual properties of piezoelectric ceramic materials. A semi-analytical approach to estimate the electromechanical coupling characteristics of multilayered functionally graded piezoelectric ceramic beams with different boundary conditions is presented. The state space method is formulated to the electroelastic theory to derive the state equations for ceramic beams along the thickness direction. The mixed supported boundary conditions are represented by means of the displacement function and Fourier series expansions, respectively. A global propagator matrix is used to connect the field variables at the internal interface to those at the external interface for the whole structure. Governing equations of the models with geometrical nonlinearity are solved using the secant method. Numerical examples show the correctness of the proposed method by finite element model and the influence of the functional gradient index factors η, different boundary conditions, and loading voltage on the static behavior of piezoelectric ceramic beams. Our results show that the modified state space approach overcomes the disadvantage of the inability to address clamped supported and free boundary conditions. η possesses the ability to improve interfacial stress discontinuities.

Abstract Image

功能梯度压电陶瓷梁的机电耦合特性
压电陶瓷材料以其独特的性能引起了研究人员的极大关注。提出了一种估计具有不同边界条件的多层功能梯度压电陶瓷梁机电耦合特性的半解析方法。将状态空间方法转化为电弹性理论,推导出陶瓷梁沿厚度方向的状态方程。混合支承边界条件分别用位移函数和傅立叶级数展开表示。采用全局传播矩阵将整个结构内部接口的场变量与外部接口的场变量连接起来。采用割线法求解几何非线性模型的控制方程。数值算例通过有限元模型验证了所提方法的正确性,以及函数梯度指数因子η、不同边界条件和加载电压对压电陶瓷梁静力性能的影响。研究结果表明,改进的状态空间方法克服了无法处理固支和自由边界条件的缺点。η具有改善界面应力不连续的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信