Decoupling the electronic gap from the spin Chern number in spin-resolved topological insulators

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Alexander C. Tyner, Cormac Grindall, J. H. Pixley
{"title":"Decoupling the electronic gap from the spin Chern number in spin-resolved topological insulators","authors":"Alexander C. Tyner, Cormac Grindall, J. H. Pixley","doi":"10.1103/physrevb.110.214211","DOIUrl":null,"url":null,"abstract":"In two-dimensional topological insulators, a disorder-induced topological phase transition is typically identified with an Anderson localization transition at the Fermi energy. However, in Z</a:mi>2</a:mn></a:msub></a:math> trivial, spin-resolved topological insulators it is the spectral gap of the spin spectrum, in addition to the bulk mobility gap, which protects the nontrivial topology of the ground state. In this work, we show that these two gaps, the bulk electronic and spin gap, can evolve distinctly on the introduction of quenched short-ranged disorder and that an odd-quantized spin Chern number topologically protects states below the Fermi energy from localization. This decoupling leads to a unique situation in which an Anderson localization transition occurs below the Fermi energy at the topological transition. Furthermore, the presence of topologically protected extended bulk states nontrivial bulk topology typically implies the existence of protected boundary modes. We demonstrate the absence of protected boundary modes in the Hamiltonian and yet the edge modes in the eigenstates of the projected spin operator survive. Our work thus provides evidence that a nonzero spin-Chern number, in the absence of a nontrivial <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:msub><c:mi mathvariant=\"double-struck\">Z</c:mi><c:mn>2</c:mn></c:msub></c:math> index, does not demand the existence of protected boundary modes at finite or zero energy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"4 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.214211","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In two-dimensional topological insulators, a disorder-induced topological phase transition is typically identified with an Anderson localization transition at the Fermi energy. However, in Z2 trivial, spin-resolved topological insulators it is the spectral gap of the spin spectrum, in addition to the bulk mobility gap, which protects the nontrivial topology of the ground state. In this work, we show that these two gaps, the bulk electronic and spin gap, can evolve distinctly on the introduction of quenched short-ranged disorder and that an odd-quantized spin Chern number topologically protects states below the Fermi energy from localization. This decoupling leads to a unique situation in which an Anderson localization transition occurs below the Fermi energy at the topological transition. Furthermore, the presence of topologically protected extended bulk states nontrivial bulk topology typically implies the existence of protected boundary modes. We demonstrate the absence of protected boundary modes in the Hamiltonian and yet the edge modes in the eigenstates of the projected spin operator survive. Our work thus provides evidence that a nonzero spin-Chern number, in the absence of a nontrivial Z2 index, does not demand the existence of protected boundary modes at finite or zero energy. Published by the American Physical Society 2024
自旋分解拓扑绝缘体中电子间隙与自旋陈恩数的解耦
在二维拓扑绝缘体中,无序引起的拓扑相变通常与费米能量处的安德森局域化转变相一致。然而,在Z2平凡的、自旋分辨的拓扑绝缘体中,除了体迁移率间隙之外,还有自旋谱的谱隙保护了基态的非平凡拓扑。在这项工作中,我们证明了这两个间隙,体电子和自旋间隙,在引入猝灭的短程无序时可以明显地演化,并且奇量子化的自旋陈恩数在拓扑上保护费米能量以下的态不受局域化。这种解耦导致了一种独特的情况,即在拓扑跃迁中,安德森局域化跃迁发生在费米能量以下。此外,拓扑保护扩展体状态的存在,非平凡体拓扑通常意味着保护边界模式的存在。我们证明了在哈密顿算符中不存在受保护的边界模式,而投影自旋算符的本征态中的边缘模式仍然存在。因此,我们的工作提供了证据,证明在没有非平凡Z2指标的情况下,非零自旋chern数不需要在有限或零能量下存在保护边界模式。2024年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信