STOUT V2.0: SMILES to IUPAC name conversion using transformer models

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kohulan Rajan, Achim Zielesny, Christoph Steinbeck
{"title":"STOUT V2.0: SMILES to IUPAC name conversion using transformer models","authors":"Kohulan Rajan,&nbsp;Achim Zielesny,&nbsp;Christoph Steinbeck","doi":"10.1186/s13321-024-00941-x","DOIUrl":null,"url":null,"abstract":"<div><p>Naming chemical compounds systematically is a complex task governed by a set of rules established by the International Union of Pure and Applied Chemistry (IUPAC). These rules are universal and widely accepted by chemists worldwide, but their complexity makes it challenging for individuals to consistently apply them accurately. A translation method can be employed to address this challenge. Accurate translation of chemical compounds from SMILES notation into their corresponding IUPAC names is crucial, as it can significantly streamline the laborious process of naming chemical structures. Here, we present STOUT (SMILES-TO-IUPAC-name translator) V2, which addresses this challenge by introducing a transformer-based model that translates string representations of chemical structures into IUPAC names. Trained on a dataset of nearly 1 billion SMILES strings and their corresponding IUPAC names, STOUT V2 demonstrates exceptional accuracy in generating IUPAC names, even for complex chemical structures. The model's ability to capture intricate patterns and relationships within chemical structures enables it to generate precise and standardised IUPAC names. While established deterministic algorithms remain the gold standard for systematic chemical naming, our work, enabled by access to OpenEye’s Lexichem software through an academic license, demonstrates the potential of neural approaches to complement existing tools in chemical nomenclature.</p><p><b>Scientific contribution </b>STOUT V2, built upon transformer-based models, is a significant advancement from our previous work. The web application enhances its accessibility and utility. By making the model and source code fully open and well-documented, we aim to promote unrestricted use and encourage further development.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00941-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00941-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Naming chemical compounds systematically is a complex task governed by a set of rules established by the International Union of Pure and Applied Chemistry (IUPAC). These rules are universal and widely accepted by chemists worldwide, but their complexity makes it challenging for individuals to consistently apply them accurately. A translation method can be employed to address this challenge. Accurate translation of chemical compounds from SMILES notation into their corresponding IUPAC names is crucial, as it can significantly streamline the laborious process of naming chemical structures. Here, we present STOUT (SMILES-TO-IUPAC-name translator) V2, which addresses this challenge by introducing a transformer-based model that translates string representations of chemical structures into IUPAC names. Trained on a dataset of nearly 1 billion SMILES strings and their corresponding IUPAC names, STOUT V2 demonstrates exceptional accuracy in generating IUPAC names, even for complex chemical structures. The model's ability to capture intricate patterns and relationships within chemical structures enables it to generate precise and standardised IUPAC names. While established deterministic algorithms remain the gold standard for systematic chemical naming, our work, enabled by access to OpenEye’s Lexichem software through an academic license, demonstrates the potential of neural approaches to complement existing tools in chemical nomenclature.

Scientific contribution STOUT V2, built upon transformer-based models, is a significant advancement from our previous work. The web application enhances its accessibility and utility. By making the model and source code fully open and well-documented, we aim to promote unrestricted use and encourage further development.

Graphical Abstract

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信