Muhamad Risqi U. Saputra, Irfan Dwiki Bhaswara, Bahrul Ilmi Nasution, Michelle Ang Li Ern, Nur Laily Romadhotul Husna, Tahjudil Witra, Vicky Feliren, John R. Owen, Deanna Kemp, Alex M. Lechner
{"title":"Multi-modal deep learning approaches to semantic segmentation of mining footprints with multispectral satellite imagery","authors":"Muhamad Risqi U. Saputra, Irfan Dwiki Bhaswara, Bahrul Ilmi Nasution, Michelle Ang Li Ern, Nur Laily Romadhotul Husna, Tahjudil Witra, Vicky Feliren, John R. Owen, Deanna Kemp, Alex M. Lechner","doi":"10.1016/j.rse.2024.114584","DOIUrl":null,"url":null,"abstract":"Existing remote sensing applications in mining are often of limited scope, typically mapping multiple mining land covers for a single mine or only mapping mining extents or a single feature (e.g., tailings dam) for multiple mines across a region. Many of these works have a narrow focus on specific mine land covers rather than encompassing the variety of mining and non-mining land use in a mine site. This study presents a pioneering effort in performing deep learning-based semantic segmentation of 37 mining locations worldwide, representing a range of commodities from gold to coal, using multispectral satellite imagery, to automate mapping of mining and non-mining land covers. Due to the absence of a dedicated training dataset, we crafted a customized multispectral dataset for training and testing deep learning models, leveraging and refining existing datasets in terms of boundaries, shapes, and class labels. We trained and tested multimodal semantic segmentation models, particularly based on U-Net, DeepLabV3+, Feature Pyramid Network (FPN), SegFormer, and IBM-NASA foundational geospatial model (Prithvi) architecture, with a focus on evaluating different model configurations, input band combinations, and the effectiveness of transfer learning. In terms of multimodality, we utilized various image bands, including Red, Green, Blue, and Near Infra-Red (NIR) and Normalized Difference Vegetation Index (NDVI), to determine which combination of inputs yields the most accurate segmentation. Results indicated that among different configurations, FPN with DenseNet-121 backbone, pre-trained on ImageNet, and trained using both RGB and NIR bands, performs the best. We concluded the study with a comprehensive assessment of the model's performance based on climate classification categories and diverse mining commodities. We believe that this work lays a robust foundation for further analysis of the complex relationship between mining projects, communities, and the environment.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"30 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114584","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Existing remote sensing applications in mining are often of limited scope, typically mapping multiple mining land covers for a single mine or only mapping mining extents or a single feature (e.g., tailings dam) for multiple mines across a region. Many of these works have a narrow focus on specific mine land covers rather than encompassing the variety of mining and non-mining land use in a mine site. This study presents a pioneering effort in performing deep learning-based semantic segmentation of 37 mining locations worldwide, representing a range of commodities from gold to coal, using multispectral satellite imagery, to automate mapping of mining and non-mining land covers. Due to the absence of a dedicated training dataset, we crafted a customized multispectral dataset for training and testing deep learning models, leveraging and refining existing datasets in terms of boundaries, shapes, and class labels. We trained and tested multimodal semantic segmentation models, particularly based on U-Net, DeepLabV3+, Feature Pyramid Network (FPN), SegFormer, and IBM-NASA foundational geospatial model (Prithvi) architecture, with a focus on evaluating different model configurations, input band combinations, and the effectiveness of transfer learning. In terms of multimodality, we utilized various image bands, including Red, Green, Blue, and Near Infra-Red (NIR) and Normalized Difference Vegetation Index (NDVI), to determine which combination of inputs yields the most accurate segmentation. Results indicated that among different configurations, FPN with DenseNet-121 backbone, pre-trained on ImageNet, and trained using both RGB and NIR bands, performs the best. We concluded the study with a comprehensive assessment of the model's performance based on climate classification categories and diverse mining commodities. We believe that this work lays a robust foundation for further analysis of the complex relationship between mining projects, communities, and the environment.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.