H2 Consumption by Various Acetogenic Bacteria Follows First‐Order Kinetics up to H2 Saturation

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Laura Muñoz‐Duarte, Susmit Chakraborty, Louise Vinther Grøn, Maria Florencia Bambace, Jacopo Catalano, Jo Philips
{"title":"H2 Consumption by Various Acetogenic Bacteria Follows First‐Order Kinetics up to H2 Saturation","authors":"Laura Muñoz‐Duarte, Susmit Chakraborty, Louise Vinther Grøn, Maria Florencia Bambace, Jacopo Catalano, Jo Philips","doi":"10.1002/bit.28904","DOIUrl":null,"url":null,"abstract":"Acetogenic bacteria play an important role in various biotechnological processes, because of their chemolithoautotrophic metabolism converting carbon dioxide with molecular hydrogen (H<jats:sub>2</jats:sub>) as electron donor into acetate. As the main factor limiting acetogenesis is often H<jats:sub>2</jats:sub>, insights into the H<jats:sub>2</jats:sub> consumption kinetics of acetogens are required to assess their potential in biotechnological processes. In this study, initial H<jats:sub>2</jats:sub> consumption rates at a range of different initial H<jats:sub>2</jats:sub> concentrations were measured for three different acetogens. Interestingly, for all three strains, H<jats:sub>2</jats:sub> consumption was found to follow first‐order kinetics, i.e. the H<jats:sub>2</jats:sub> consumption rate increased linearly with the dissolved H<jats:sub>2</jats:sub> concentration, up to almost saturated H<jats:sub>2</jats:sub> levels (600 µM). This is in contrast with Monod kinetics and low half‐saturation concentrations, which have commonly been assumed for acetogens. The obtained biomass specific first‐order rate coefficients (<jats:italic>k</jats:italic><jats:sub>1</jats:sub><jats:sup>X</jats:sup>) were further validated by comparison with values obtained by fitting first‐order kinetics on previous time‐course experimental results. The latter method was also used to determine the <jats:italic>k</jats:italic><jats:sub>1</jats:sub><jats:sup>X</jats:sup> value of five additional acetogens strains. Biomass specific first‐order rate coefficients were found to vary up to six‐fold, with the highest <jats:italic>k</jats:italic><jats:sub>1</jats:sub><jats:sup>X</jats:sup> for <jats:italic>Acetobacterium wieringae</jats:italic> and the lowest for <jats:italic>Sporomusa sphaeroides</jats:italic>. Overall, our results demonstrate the importance of the dissolved H<jats:sub>2</jats:sub> concentration to understand the rate of acetogenesis in biotechnological systems.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"48 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28904","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acetogenic bacteria play an important role in various biotechnological processes, because of their chemolithoautotrophic metabolism converting carbon dioxide with molecular hydrogen (H2) as electron donor into acetate. As the main factor limiting acetogenesis is often H2, insights into the H2 consumption kinetics of acetogens are required to assess their potential in biotechnological processes. In this study, initial H2 consumption rates at a range of different initial H2 concentrations were measured for three different acetogens. Interestingly, for all three strains, H2 consumption was found to follow first‐order kinetics, i.e. the H2 consumption rate increased linearly with the dissolved H2 concentration, up to almost saturated H2 levels (600 µM). This is in contrast with Monod kinetics and low half‐saturation concentrations, which have commonly been assumed for acetogens. The obtained biomass specific first‐order rate coefficients (k1X) were further validated by comparison with values obtained by fitting first‐order kinetics on previous time‐course experimental results. The latter method was also used to determine the k1X value of five additional acetogens strains. Biomass specific first‐order rate coefficients were found to vary up to six‐fold, with the highest k1X for Acetobacterium wieringae and the lowest for Sporomusa sphaeroides. Overall, our results demonstrate the importance of the dissolved H2 concentration to understand the rate of acetogenesis in biotechnological systems.

Abstract Image

各种产氢细菌的H2消耗遵循一级动力学直到H2饱和
产醋酸菌以分子氢(H2)为电子供体将二氧化碳转化为乙酸盐,在各种生物工艺过程中发挥着重要作用。由于限制产氢的主要因素通常是氢气,因此需要深入了解氢气消耗动力学以评估其在生物技术过程中的潜力。在本研究中,测量了三种不同的初始氢气浓度范围内的初始氢气消耗率。有趣的是,对于所有三种菌株,H2消耗被发现遵循一级动力学,即H2消耗速率随溶解H2浓度线性增加,直到接近饱和H2水平(600µM)。这与Monod动力学和低半饱和浓度形成对比,这通常被认为是对醋酸的。得到的生物量比一级速率系数(k1X)通过与先前时间过程实验结果的一级动力学拟合得到的值进行比较进一步验证。后一种方法还用于测定另外5种产酵素菌株的k1X值。生物量比一级速率系数变化高达6倍,其中wieringae Acetobacterium k1X最高,sphaeroides最低。总的来说,我们的研究结果证明了溶解H2浓度对了解生物技术系统中丙酮生成速率的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信