{"title":"Fault attacks on multi-prime RSA signatures","authors":"Chunzhi Zhao, Jinzheng Cao, Junqi Zhang, Qingfeng Cheng","doi":"10.1007/s10623-024-01554-z","DOIUrl":null,"url":null,"abstract":"<p>At CHES 2009, Coron et al. proposed a fault attack on standard RSA signatures based on Coppersmith’s method. This work greatly enhances the practicality of fault attacks on RSA signatures. In practice, multi-prime RSA signatures are widely used due to their faster generation speed. In this paper, we propose fault attacks on multi-prime RSA signatures under the PKCS#1 v2.x protocols. We conduct the fault attacks based on Coppersmith’s method in various scenarios. To be specific, we first consider the case where there is only one fault signature, and then we consider the cases where there are multiple fault signatures with co-prime moduli, common moduli, and arbitrary moduli. For each case, we give the upper bound of the unknowns that can be solved in polynomial time, which improves the practicability of the attacks. Our research is grounded in the EMSA-PKCS1-v1_5 encoding method and has been verified by experiments.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"33 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01554-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
At CHES 2009, Coron et al. proposed a fault attack on standard RSA signatures based on Coppersmith’s method. This work greatly enhances the practicality of fault attacks on RSA signatures. In practice, multi-prime RSA signatures are widely used due to their faster generation speed. In this paper, we propose fault attacks on multi-prime RSA signatures under the PKCS#1 v2.x protocols. We conduct the fault attacks based on Coppersmith’s method in various scenarios. To be specific, we first consider the case where there is only one fault signature, and then we consider the cases where there are multiple fault signatures with co-prime moduli, common moduli, and arbitrary moduli. For each case, we give the upper bound of the unknowns that can be solved in polynomial time, which improves the practicability of the attacks. Our research is grounded in the EMSA-PKCS1-v1_5 encoding method and has been verified by experiments.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.