{"title":"Engineering Hierarchical Symmetries","authors":"Zhanpeng Fu, Roderich Moessner, Hongzheng Zhao, Marin Bukov","doi":"10.1103/physrevx.14.041070","DOIUrl":null,"url":null,"abstract":"The capacity to custom tailor the properties of quantum matter and materials is a central requirement for enlarging their range of possible functionalities. A particularly promising route is the use of driving protocols to engineer specific desired properties with a high degree of control and flexibility. Here, we present such a program for the tunable generation of sequences of symmetries on controllable timescales. Concretely, our general driving protocol for many-body systems generates a sequence of prethermal regimes, each exhibiting a lower symmetry than the preceding one. We provide an explicit construction of effective Hamiltonians exhibiting these symmetries, which imprints emergent quasiconservation laws hierarchically, enabling us to engineer the respective symmetries and concomitant orders in nonequilibrium matter. We provide explicit examples, including spatiotemporal and topological phenomena, as well as a spin chain realizing the symmetry ladder SU</a:mi>(</a:mo>2</a:mn>)</a:mo></a:mrow>→</a:mo>U</a:mi>(</a:mo>1</a:mn>)</a:mo></a:mrow>→</a:mo>Z</a:mi>2</a:mn></a:msub>→</a:mo>E</a:mi></a:math>. Our results have direct applications in experiments with quantum simulators. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"64 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041070","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The capacity to custom tailor the properties of quantum matter and materials is a central requirement for enlarging their range of possible functionalities. A particularly promising route is the use of driving protocols to engineer specific desired properties with a high degree of control and flexibility. Here, we present such a program for the tunable generation of sequences of symmetries on controllable timescales. Concretely, our general driving protocol for many-body systems generates a sequence of prethermal regimes, each exhibiting a lower symmetry than the preceding one. We provide an explicit construction of effective Hamiltonians exhibiting these symmetries, which imprints emergent quasiconservation laws hierarchically, enabling us to engineer the respective symmetries and concomitant orders in nonequilibrium matter. We provide explicit examples, including spatiotemporal and topological phenomena, as well as a spin chain realizing the symmetry ladder SU(2)→U(1)→Z2→E. Our results have direct applications in experiments with quantum simulators. Published by the American Physical Society2024
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.