{"title":"Exhaustive Characterization of Quantum Many-Body Scars Using Commutant Algebras","authors":"Sanjay Moudgalya, Olexei I. Motrunich","doi":"10.1103/physrevx.14.041069","DOIUrl":null,"url":null,"abstract":"We study quantum many-body scars (QMBS) in the language of commutant algebras, which are defined as symmetry algebras of of local Hamiltonians. This framework explains the origin of dynamically disconnected subspaces seen in models with exact QMBS, i.e., the large “thermal” subspace and the small “nonthermal” subspace, which are attributed to the existence of unconventional nonlocal conserved quantities in the commutant; hence, it unifies the study of conventional symmetries and weak ergodicity-breaking phenomena into a single framework. Furthermore, this language enables us to use the von Neumann double commutant theorem to formally write down the exhaustive algebra of Hamiltonians with a desired set of QMBS, which demonstrates that QMBS survive under large classes of local perturbations. We illustrate this using several standard examples of QMBS, including the spin-1</a:mn>/</a:mo>2</a:mn></a:mrow></a:math> ferromagnetic, AKLT, spin-1 XY <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>π</c:mi></c:math>-bimagnon, and the electronic <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>η</e:mi></e:math>-pairing towers of states; in each of these cases, we explicitly write down a set of generators for the full algebra of Hamiltonians with these QMBS. Understanding this hidden structure in QMBS Hamiltonians also allows us to recover results of previous “brute-force” numerical searches for such Hamiltonians. In addition, this language clearly demonstrates the equivalence of several unified formalisms for QMBS proposed in the literature and also illustrates the connection between two apparently distinct classes of QMBS Hamiltonians—those that are captured by the so-called Shiraishi-Mori construction and those that lie beyond. Finally, we show that this framework motivates a precise definition for QMBS that automatically implies that they violate the conventional eigenstate thermalization hypothesis, and we discuss its implications to dynamics. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"47 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041069","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study quantum many-body scars (QMBS) in the language of commutant algebras, which are defined as symmetry algebras of of local Hamiltonians. This framework explains the origin of dynamically disconnected subspaces seen in models with exact QMBS, i.e., the large “thermal” subspace and the small “nonthermal” subspace, which are attributed to the existence of unconventional nonlocal conserved quantities in the commutant; hence, it unifies the study of conventional symmetries and weak ergodicity-breaking phenomena into a single framework. Furthermore, this language enables us to use the von Neumann double commutant theorem to formally write down the exhaustive algebra of Hamiltonians with a desired set of QMBS, which demonstrates that QMBS survive under large classes of local perturbations. We illustrate this using several standard examples of QMBS, including the spin-1/2 ferromagnetic, AKLT, spin-1 XY π-bimagnon, and the electronic η-pairing towers of states; in each of these cases, we explicitly write down a set of generators for the full algebra of Hamiltonians with these QMBS. Understanding this hidden structure in QMBS Hamiltonians also allows us to recover results of previous “brute-force” numerical searches for such Hamiltonians. In addition, this language clearly demonstrates the equivalence of several unified formalisms for QMBS proposed in the literature and also illustrates the connection between two apparently distinct classes of QMBS Hamiltonians—those that are captured by the so-called Shiraishi-Mori construction and those that lie beyond. Finally, we show that this framework motivates a precise definition for QMBS that automatically implies that they violate the conventional eigenstate thermalization hypothesis, and we discuss its implications to dynamics. Published by the American Physical Society2024
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.