Deciphering a profiling based on multiple post-translational modifications functionally associated regulatory patterns and therapeutic opportunities in human hepatocellular carcinoma
{"title":"Deciphering a profiling based on multiple post-translational modifications functionally associated regulatory patterns and therapeutic opportunities in human hepatocellular carcinoma","authors":"Yuanxiang Lao, Yirong Jin, Songfeng Wu, Ting Fang, Qiang Wang, Longqin Sun, Beicheng Sun","doi":"10.1186/s12943-024-02199-1","DOIUrl":null,"url":null,"abstract":"Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized. Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment. We detected robust preferences in locations of intrinsically disordered protein regions (IDRs) with phosphorylated sites and other site biases to locate in folded regions. Integrative analyses revealed that phosphorylated and multiple acylated-modified sites are enriched in proteins containing RRM1 domain, and RNA splicing is the key feature of this subset of proteins, as indicated by phosphorylation and acylation of splicing factor NCL at multiple residues. We confirmed that NCL-S67, K398, and K646 cooperate to regulate RNA processing. Together, this proteome profiling represents a comprehensive study detailing regulatory patterns based on multiple PTMs of HCC.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"41 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02199-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized. Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment. We detected robust preferences in locations of intrinsically disordered protein regions (IDRs) with phosphorylated sites and other site biases to locate in folded regions. Integrative analyses revealed that phosphorylated and multiple acylated-modified sites are enriched in proteins containing RRM1 domain, and RNA splicing is the key feature of this subset of proteins, as indicated by phosphorylation and acylation of splicing factor NCL at multiple residues. We confirmed that NCL-S67, K398, and K646 cooperate to regulate RNA processing. Together, this proteome profiling represents a comprehensive study detailing regulatory patterns based on multiple PTMs of HCC.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.