Léandre Kamdjeu Kengne, Vitrice Ruben Folifack Signing, Davide Rossi Sebastiano, Raoul Blaise Wafo Tekam, Joakim Vianney Ngamsa Tegnitsap, Manyu Zhao, Qingshi Bao, Jacques Kengne, Pedro Antonio Valdes-Sosa, Ludovico Minati
{"title":"Simplest transistor-based chaotic circuit with extreme events: Statistical characterization, synchronization, and analogy with interictal spikes","authors":"Léandre Kamdjeu Kengne, Vitrice Ruben Folifack Signing, Davide Rossi Sebastiano, Raoul Blaise Wafo Tekam, Joakim Vianney Ngamsa Tegnitsap, Manyu Zhao, Qingshi Bao, Jacques Kengne, Pedro Antonio Valdes-Sosa, Ludovico Minati","doi":"10.1016/j.chaos.2024.115894","DOIUrl":null,"url":null,"abstract":"This paper investigates the simplest autonomous chaotic circuit capable of generating extreme events, comprising a DC voltage source, a series resistor, a capacitor, three inductors, and two bipolar transistors. The statistical properties and synchronization of the extreme events generated by the system are characterized using a simplified equation model, realistic SPICE simulations, and experimental circuit measurements. Heavy-tailed amplitude distributions and Poisson-like inter-event intervals are uncovered, confirming the existence and uncorrelated nature of the extreme events generated in this elementary circuit. Furthermore, a regime is identified where the extreme events synchronize significantly more strongly than the underlying lower-amplitude continuous activity that paces the dynamics, and a novel approach to visualize this situation is introduced. By drawing a tentative parallel with the interictal spikes observed in the neuroelectrical recordings of epilepsy patients, the study proposes that the analog chaotic circuit under consideration could, in the future, serve as a physical model for studying epileptic-like dynamics in electronic networks.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"202 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115894","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the simplest autonomous chaotic circuit capable of generating extreme events, comprising a DC voltage source, a series resistor, a capacitor, three inductors, and two bipolar transistors. The statistical properties and synchronization of the extreme events generated by the system are characterized using a simplified equation model, realistic SPICE simulations, and experimental circuit measurements. Heavy-tailed amplitude distributions and Poisson-like inter-event intervals are uncovered, confirming the existence and uncorrelated nature of the extreme events generated in this elementary circuit. Furthermore, a regime is identified where the extreme events synchronize significantly more strongly than the underlying lower-amplitude continuous activity that paces the dynamics, and a novel approach to visualize this situation is introduced. By drawing a tentative parallel with the interictal spikes observed in the neuroelectrical recordings of epilepsy patients, the study proposes that the analog chaotic circuit under consideration could, in the future, serve as a physical model for studying epileptic-like dynamics in electronic networks.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.