Complexity analysis of challenges and speckle patterns in an Optical Physical Unclonable Function

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Christos N. Veinidis , Marialena Akriotou , Alex Kondi , Efi-Maria Papia , Vassilios Constantoudis , Dimitris Syvridis
{"title":"Complexity analysis of challenges and speckle patterns in an Optical Physical Unclonable Function","authors":"Christos N. Veinidis ,&nbsp;Marialena Akriotou ,&nbsp;Alex Kondi ,&nbsp;Efi-Maria Papia ,&nbsp;Vassilios Constantoudis ,&nbsp;Dimitris Syvridis","doi":"10.1016/j.chaos.2024.115938","DOIUrl":null,"url":null,"abstract":"<div><div>Speckle patterns, arising from the interference of coherent wave fronts scattered by disordered materials, serve as the basis for Optical Physical Unclonable Functions (Optical PUF), offering inherent randomness crucial for generating secure cryptographic keys. This paper investigates the universal properties of speckle images through an analysis of their complexity using a multiscale entropy-based methodology. Utilizing an experimental setup simulating Optical PUFs, eight sets of uncorrelated challenges produce speckle patterns meeting contemporary literature specifications. The Pearson’s Cross-Correlation Coefficient and the cross-correlation function are used to assess the similarity between the speckle patterns within each individual set, by calculating these measures for all possible pairs of corresponding patterns. The entropy-based complexity analysis of these patterns is found to be sensitive to their grain size while elucidating in a multiscale fashion the entropy footprint of their short and long-range correlations. Finally, it is shown that the presence of grains in the speckle patterns determines their complexity, while a kind of duality between the challenges and the produced speckle patterns is highlighted.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115938"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924014905","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Speckle patterns, arising from the interference of coherent wave fronts scattered by disordered materials, serve as the basis for Optical Physical Unclonable Functions (Optical PUF), offering inherent randomness crucial for generating secure cryptographic keys. This paper investigates the universal properties of speckle images through an analysis of their complexity using a multiscale entropy-based methodology. Utilizing an experimental setup simulating Optical PUFs, eight sets of uncorrelated challenges produce speckle patterns meeting contemporary literature specifications. The Pearson’s Cross-Correlation Coefficient and the cross-correlation function are used to assess the similarity between the speckle patterns within each individual set, by calculating these measures for all possible pairs of corresponding patterns. The entropy-based complexity analysis of these patterns is found to be sensitive to their grain size while elucidating in a multiscale fashion the entropy footprint of their short and long-range correlations. Finally, it is shown that the presence of grains in the speckle patterns determines their complexity, while a kind of duality between the challenges and the produced speckle patterns is highlighted.
光学物理不可克隆函数中挑战和散斑模式的复杂性分析
散斑模式是由无序材料散射的相干波前干涉产生的,是光学物理不可克隆函数(Optical PUF)的基础,它提供了对生成安全密码密钥至关重要的固有随机性。本文利用基于多尺度熵的方法分析了散斑图像的复杂性,研究了散斑图像的普遍特性。利用模拟光学puf的实验装置,八组不相关的挑战产生符合当代文献规范的斑点图案。Pearson’s Cross-Correlation Coefficient和Cross-Correlation function通过计算所有可能的对应模式对的度量值来评估每个单独集合中散斑模式之间的相似性。基于熵的复杂性分析发现,在以多尺度方式阐明其短期和长期相关性的熵足迹时,这些模式对其粒度敏感。结果表明,颗粒的存在决定了散斑图案的复杂性,同时强调了挑战与产生的散斑图案之间的二元性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信