Clinical response to neurofeedback in major depression relates to subtypes of whole-brain activation patterns during training

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Masaya Misaki, Kymberly D. Young, Aki Tsuchiyagaito, Jonathan Savitz, Salvador M. Guinjoan
{"title":"Clinical response to neurofeedback in major depression relates to subtypes of whole-brain activation patterns during training","authors":"Masaya Misaki, Kymberly D. Young, Aki Tsuchiyagaito, Jonathan Savitz, Salvador M. Guinjoan","doi":"10.1038/s41380-024-02880-3","DOIUrl":null,"url":null,"abstract":"<p>Major Depressive Disorder (MDD) poses a significant public health challenge due to its high prevalence and the substantial burden it places on individuals and healthcare systems. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) shows promise as a treatment for this disorder, although its mechanisms of action remain unclear. This study investigated whole-brain response patterns during rtfMRI-NF training to explain interindividual variability in clinical efficacy in MDD. We analyzed data from 95 participants (67 active, 28 control) with MDD from previous rtfMRI-NF studies designed to increase left amygdala activation through positive autobiographical memory recall. Significant symptom reduction was observed in the active group (<i>t</i> = −4.404, <i>d</i> = −0.704, <i>p</i> &lt; 0.001) but not in the control group (<i>t</i> = −1.609, <i>d</i> = −0.430, <i>p</i> = 0.111). However, left amygdala activation did not account for the variability in clinical efficacy. To elucidate the brain training process underlying the clinical effect, we examined whole-brain activation patterns during two critical phases of the neurofeedback procedure: activation during the self-regulation period, and transient responses to feedback signal presentations. Using a systematic process involving feature selection, manifold extraction, and clustering with cross-validation, we identified two subtypes of regulation activation and three subtypes of brain responses to feedback signals. These subtypes were significantly associated with the clinical effect (regulation subtype: <i>F</i> = 8.735, <i>p</i> = 0.005; feedback response subtype: <i>F</i> = 5.326, <i>p</i> = 0.008; subtypes’ interaction: <i>F</i> = 3.471, <i>p</i> = 0.039). Subtypes associated with significant symptom reduction were characterized by selective increases in control regions, including lateral prefrontal areas, and decreases in regions associated with self-referential thinking, such as default mode areas. These findings suggest that large-scale brain activity during training is more critical for clinical efficacy than the level of activation in the neurofeedback target region itself. Tailoring neurofeedback training to incorporate these patterns could significantly enhance its therapeutic efficacy.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"25 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02880-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Major Depressive Disorder (MDD) poses a significant public health challenge due to its high prevalence and the substantial burden it places on individuals and healthcare systems. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) shows promise as a treatment for this disorder, although its mechanisms of action remain unclear. This study investigated whole-brain response patterns during rtfMRI-NF training to explain interindividual variability in clinical efficacy in MDD. We analyzed data from 95 participants (67 active, 28 control) with MDD from previous rtfMRI-NF studies designed to increase left amygdala activation through positive autobiographical memory recall. Significant symptom reduction was observed in the active group (t = −4.404, d = −0.704, p < 0.001) but not in the control group (t = −1.609, d = −0.430, p = 0.111). However, left amygdala activation did not account for the variability in clinical efficacy. To elucidate the brain training process underlying the clinical effect, we examined whole-brain activation patterns during two critical phases of the neurofeedback procedure: activation during the self-regulation period, and transient responses to feedback signal presentations. Using a systematic process involving feature selection, manifold extraction, and clustering with cross-validation, we identified two subtypes of regulation activation and three subtypes of brain responses to feedback signals. These subtypes were significantly associated with the clinical effect (regulation subtype: F = 8.735, p = 0.005; feedback response subtype: F = 5.326, p = 0.008; subtypes’ interaction: F = 3.471, p = 0.039). Subtypes associated with significant symptom reduction were characterized by selective increases in control regions, including lateral prefrontal areas, and decreases in regions associated with self-referential thinking, such as default mode areas. These findings suggest that large-scale brain activity during training is more critical for clinical efficacy than the level of activation in the neurofeedback target region itself. Tailoring neurofeedback training to incorporate these patterns could significantly enhance its therapeutic efficacy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信