Fabio J Cortés Rodríguez, Gianfranco Frattini, Sittha Phloi-Montri, Fernando Teixeira Pinto Meireles, Danaé A Terrien, Sergio Cruz-León, Matteo Dal Peraro, Eva Schier, Kresten Lindorff-Larsen, Taweetham Limpanuparb, Diego M Moreno, Luciano A Abriata
{"title":"MolecularWebXR: Multiuser discussions in chemistry and biology through immersive and inclusive augmented and virtual reality.","authors":"Fabio J Cortés Rodríguez, Gianfranco Frattini, Sittha Phloi-Montri, Fernando Teixeira Pinto Meireles, Danaé A Terrien, Sergio Cruz-León, Matteo Dal Peraro, Eva Schier, Kresten Lindorff-Larsen, Taweetham Limpanuparb, Diego M Moreno, Luciano A Abriata","doi":"10.1016/j.jmgm.2024.108932","DOIUrl":null,"url":null,"abstract":"<p><p>MolecularWebXR is a new web-based platform for education, science communication and scientific peer discussion in chemistry and biology, based on modern web-based Virtual Reality (VR) and Augmented Reality (AR). With no installs as it is all web-served, MolecularWebXR enables multiple users to simultaneously explore, communicate and discuss concepts about chemistry and biology in immersive 3D environments, by manipulating and passing around objects with their bare hands and pointing at different elements with natural hand gestures. Users may either be present in the same physical space or distributed around the world, in the latter case talking naturally with each other thanks to built-in audio. While MolecularWebXR offers the most immersive experience on high-end AR/VR headsets, its WebXR core also supports participation on consumer devices such as smartphones (with optional cardboard goggles for enhanced immersion), computers, and tablets. MolecularWebXR includes preset VR rooms covering topics in general, inorganic, and organic chemistry, as well as biophysics, structural biology, and general biology. Users can also add new content via the PDB2AR tool. We demonstrate MolecularWebXR's versatility and ease of use across a wide age range (12-80) in fully virtual and mixed real-virtual sessions at science outreach events, undergraduate and graduate courses, scientific collaborations, and conference presentations. MolecularWebXR is available for free use without registration at https://molecularwebxr.org. A blog post version of this preprint with embedded videos is available at https://go.epfl.ch/molecularwebxr-blog-post.</p>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"135 ","pages":"108932"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmgm.2024.108932","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
MolecularWebXR is a new web-based platform for education, science communication and scientific peer discussion in chemistry and biology, based on modern web-based Virtual Reality (VR) and Augmented Reality (AR). With no installs as it is all web-served, MolecularWebXR enables multiple users to simultaneously explore, communicate and discuss concepts about chemistry and biology in immersive 3D environments, by manipulating and passing around objects with their bare hands and pointing at different elements with natural hand gestures. Users may either be present in the same physical space or distributed around the world, in the latter case talking naturally with each other thanks to built-in audio. While MolecularWebXR offers the most immersive experience on high-end AR/VR headsets, its WebXR core also supports participation on consumer devices such as smartphones (with optional cardboard goggles for enhanced immersion), computers, and tablets. MolecularWebXR includes preset VR rooms covering topics in general, inorganic, and organic chemistry, as well as biophysics, structural biology, and general biology. Users can also add new content via the PDB2AR tool. We demonstrate MolecularWebXR's versatility and ease of use across a wide age range (12-80) in fully virtual and mixed real-virtual sessions at science outreach events, undergraduate and graduate courses, scientific collaborations, and conference presentations. MolecularWebXR is available for free use without registration at https://molecularwebxr.org. A blog post version of this preprint with embedded videos is available at https://go.epfl.ch/molecularwebxr-blog-post.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.