On the parameterized complexity of the median and closest problems under some permutation metrics.

IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Luís Cunha, Ignasi Sau, Uéverton Souza
{"title":"On the parameterized complexity of the median and closest problems under some permutation metrics.","authors":"Luís Cunha, Ignasi Sau, Uéverton Souza","doi":"10.1186/s13015-024-00269-z","DOIUrl":null,"url":null,"abstract":"<p><p>Genome rearrangements are events where large blocks of DNA exchange places during evolution. The analysis of these events is a promising tool for understanding evolutionary genomics, providing data for phylogenetic reconstruction based on genome rearrangement measures. Many pairwise rearrangement distances have been proposed, based on finding the minimum number of rearrangement events to transform one genome into the other, using some predefined operation. When more than two genomes are considered, we have the more challenging problem of rearrangement-based phylogeny reconstruction. Given a set of genomes and a distance notion, there are at least two natural ways to define the \"target\" genome. On the one hand, finding a genome that minimizes the sum of the distances from this to any other, called the median genome. On the other hand, finding a genome that minimizes the maximum distance to any other, called the closest genome. Considering genomes as permutations of distinct integers, some distance metrics have been extensively studied. We investigate the median and closest problems on permutations over the following metrics: breakpoint distance, swap distance, block-interchange distance, short-block-move distance, and transposition distance. In biological applications some values are usually very small, such as the solution value d or the number k of input permutations. For each of these metrics and parameters d or k, we analyze the closest and the median problems from the viewpoint of parameterized complexity. We obtain the following results: NP-hardness for finding the median/closest permutation regarding some metrics of distance, even for only <math><mrow><mi>k</mi> <mo>=</mo> <mn>3</mn></mrow> </math> permutations; Polynomial kernels for the problems of finding the median permutation of all studied metrics, considering the target distance d as parameter; NP-hardness result for finding the closest permutation by short-block-moves; FPT algorithms and infeasibility of polynomial kernels for finding the closest permutation for some metrics when parameterized by the target distance d.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"19 1","pages":"24"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-024-00269-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Genome rearrangements are events where large blocks of DNA exchange places during evolution. The analysis of these events is a promising tool for understanding evolutionary genomics, providing data for phylogenetic reconstruction based on genome rearrangement measures. Many pairwise rearrangement distances have been proposed, based on finding the minimum number of rearrangement events to transform one genome into the other, using some predefined operation. When more than two genomes are considered, we have the more challenging problem of rearrangement-based phylogeny reconstruction. Given a set of genomes and a distance notion, there are at least two natural ways to define the "target" genome. On the one hand, finding a genome that minimizes the sum of the distances from this to any other, called the median genome. On the other hand, finding a genome that minimizes the maximum distance to any other, called the closest genome. Considering genomes as permutations of distinct integers, some distance metrics have been extensively studied. We investigate the median and closest problems on permutations over the following metrics: breakpoint distance, swap distance, block-interchange distance, short-block-move distance, and transposition distance. In biological applications some values are usually very small, such as the solution value d or the number k of input permutations. For each of these metrics and parameters d or k, we analyze the closest and the median problems from the viewpoint of parameterized complexity. We obtain the following results: NP-hardness for finding the median/closest permutation regarding some metrics of distance, even for only k = 3 permutations; Polynomial kernels for the problems of finding the median permutation of all studied metrics, considering the target distance d as parameter; NP-hardness result for finding the closest permutation by short-block-moves; FPT algorithms and infeasibility of polynomial kernels for finding the closest permutation for some metrics when parameterized by the target distance d.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms for Molecular Biology
Algorithms for Molecular Biology 生物-生化研究方法
CiteScore
2.40
自引率
10.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning. Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms. Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信