N-Tosyl Hydrazone Benzopyran, a New Ligand of PPARα Obtained from Mapping the Conformational Space of Its Active Site.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Ayelén Schiel, Rodrigo D Tosso, Emilio Angelina, Ainhoa García, Nathalie Hennuyer, Diego Cortes, Nuria Cabedo, Ricardo D Enriz
{"title":"<i>N</i>-Tosyl Hydrazone Benzopyran, a New Ligand of PPARα Obtained from Mapping the Conformational Space of Its Active Site.","authors":"Ayelén Schiel, Rodrigo D Tosso, Emilio Angelina, Ainhoa García, Nathalie Hennuyer, Diego Cortes, Nuria Cabedo, Ricardo D Enriz","doi":"10.1021/acs.jcim.4c01887","DOIUrl":null,"url":null,"abstract":"<p><p>We report here a new ligand for the peroxisome-proliferator-activated receptor type α (PPARα), an N-tosyl hydrazone benzopyran that was designed throughout the mapping of the polar zone of the binding site of PPARα; such a compound displays a strong activity on this receptor that is comparable to that of the reference compound WY-14643. For the design of the <i>N</i>-tosyl hydrazone benzopyran, we have carried out an exhaustive conformational study of WY-14643 and a previously reported hydrazine benzopyran derivative using conformational potential energy surfaces (PES). This study allowed us to map in a systematic way the entire binding site of the PPARα. PESs allowed us to evaluate all of the critical points on the surface (minimum, transition states, and maxima) and determine the different conformational interconversion paths. Once the geometries of the different complexes were determined, we carried out the study of the different molecular interactions that stabilize these complexes through the use of QTAIM calculations. We report here for the first time the molecular behavior of WY-14643 and two compounds synthesized in our lab interacting in the active site of the PPARα providing all of the details about the different interactions that stabilize the formation of these complexes. On the basis of such information, we were able to design and synthesize a new N-tosyl hydrazone benzopyran possessing a strong agonist effect on PPARα. The information provided by this study is very useful to get a better understanding of the behavior with this type of ligand on the PPARα, giving also interesting information as a guide for the design of new ligands for this receptor.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01887","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report here a new ligand for the peroxisome-proliferator-activated receptor type α (PPARα), an N-tosyl hydrazone benzopyran that was designed throughout the mapping of the polar zone of the binding site of PPARα; such a compound displays a strong activity on this receptor that is comparable to that of the reference compound WY-14643. For the design of the N-tosyl hydrazone benzopyran, we have carried out an exhaustive conformational study of WY-14643 and a previously reported hydrazine benzopyran derivative using conformational potential energy surfaces (PES). This study allowed us to map in a systematic way the entire binding site of the PPARα. PESs allowed us to evaluate all of the critical points on the surface (minimum, transition states, and maxima) and determine the different conformational interconversion paths. Once the geometries of the different complexes were determined, we carried out the study of the different molecular interactions that stabilize these complexes through the use of QTAIM calculations. We report here for the first time the molecular behavior of WY-14643 and two compounds synthesized in our lab interacting in the active site of the PPARα providing all of the details about the different interactions that stabilize the formation of these complexes. On the basis of such information, we were able to design and synthesize a new N-tosyl hydrazone benzopyran possessing a strong agonist effect on PPARα. The information provided by this study is very useful to get a better understanding of the behavior with this type of ligand on the PPARα, giving also interesting information as a guide for the design of new ligands for this receptor.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信