Automatic classification of near-fault pulse-like ground motions

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hongwu Yang, Yingmin Li, Weihao Pan, Lei Hu, Shuyan Ji
{"title":"Automatic classification of near-fault pulse-like ground motions","authors":"Hongwu Yang, Yingmin Li, Weihao Pan, Lei Hu, Shuyan Ji","doi":"10.1111/mice.13408","DOIUrl":null,"url":null,"abstract":"This study presents an automated, quantitative classification method for near-fault pulse-like ground motions, distinguishing between forward-directivity and fling-step (FS) motions. The method introduces two novel parameters—the pulse velocity ratio and pulse area ratio—which transform the classification standard from a qualitative to a quantitative framework. Combined with an enhanced pulse extraction technique that captures permanent displacement characteristics, these parameters significantly improve classification efficiency and repeatability. This automated approach overcomes the limitations of manual classification, providing reproducible results. The identified FS ground motions can be applied to the dynamic analysis of cross-fault structures, enhancing the reliability of seismic hazard assessments.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"29 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13408","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an automated, quantitative classification method for near-fault pulse-like ground motions, distinguishing between forward-directivity and fling-step (FS) motions. The method introduces two novel parameters—the pulse velocity ratio and pulse area ratio—which transform the classification standard from a qualitative to a quantitative framework. Combined with an enhanced pulse extraction technique that captures permanent displacement characteristics, these parameters significantly improve classification efficiency and repeatability. This automated approach overcomes the limitations of manual classification, providing reproducible results. The identified FS ground motions can be applied to the dynamic analysis of cross-fault structures, enhancing the reliability of seismic hazard assessments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信