{"title":"Predicting Polyolefin Microstructure: A Parallelized Multidimensional Model for Metallocene-Catalyzed Copolymerization of Propylene and 1-Decene","authors":"Franco Herrero, Adriana Brandolin, Claudia Sarmoria, Mariano Asteasuain","doi":"10.1002/adts.202401072","DOIUrl":null,"url":null,"abstract":"This work explores the copolymerization of propylene and 1-decene using homogeneous metallocene catalysts to optimize polyolefin functionalization. A detailed mathematical model is developed with experimental validation employing the method of moments and probability generating functions to predict average molecular properties, the molecular weight distribution, the copolymer composition distribution, and the joint molecular weight distribution-copolymer composition distribution. To efficiently handle computational resources, the model code is parallelized. This comprehensive model allows for explaining in detail the copolymer's microstructure under various semibatch reactor conditions. Moreover, the model is a powerful tool for selecting reaction conditions to synthesize materials with desired properties.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"41 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401072","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This work explores the copolymerization of propylene and 1-decene using homogeneous metallocene catalysts to optimize polyolefin functionalization. A detailed mathematical model is developed with experimental validation employing the method of moments and probability generating functions to predict average molecular properties, the molecular weight distribution, the copolymer composition distribution, and the joint molecular weight distribution-copolymer composition distribution. To efficiently handle computational resources, the model code is parallelized. This comprehensive model allows for explaining in detail the copolymer's microstructure under various semibatch reactor conditions. Moreover, the model is a powerful tool for selecting reaction conditions to synthesize materials with desired properties.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics