Miriam Colaço, Julia Ewert, Jan-Simon von Glasenapp, Uwe Pischel, Rainer Herges, Nuno Basílio
{"title":"Diazocines as Guests of Cucurbituril Macrocycles: Light-Responsive Binding and Supramolecular Catalysis of Thermal Isomerization","authors":"Miriam Colaço, Julia Ewert, Jan-Simon von Glasenapp, Uwe Pischel, Rainer Herges, Nuno Basílio","doi":"10.1021/jacs.4c13353","DOIUrl":null,"url":null,"abstract":"The photoswitching of supramolecular host–guest complexes is the basis of numerous molecularly controlled macroscopic functions, such as sol–gel transition, photopharmacology, the active transport of ions or molecules, light-powered molecular machines, and much more. The most commonly used systems employ photoactive azobenzene guests and synthetic host molecules, which bind as the stable <i>E</i> isomers and dissociate as the <i>Z</i> forms after exposure to UV light. We present a new, extraordinarily efficient cucurbit[7]uril (CB7)/diazocine host/guest complex with inverted stability that self-assembles under UV irradiation and dissociates in the dark. The association constants of the <i>Z</i> and <i>E</i> isomers in water differ by more than 10<sup>4</sup>-fold. We also show that the thermally activated <i>E</i> → <i>Z</i> isomerization is significantly accelerated by CB7, which is a rare case of enzyme-like catalysis by transition state stabilization without product inhibition. In contrast to CB7, cucurbit[8]uril (CB8) binds both isomers with high affinity, showing good selectivity (∼1000-fold) toward the <i>Z</i> isomer. Notably, this isomer preferentially binds CB8 relative to CB7 by a factor greater than 1 × 10<sup>6</sup>. We also use the system to introduce a supramolecular photoacid that builds on the increased basicity of a guest bound to CB7 and on the extremely high affinity of the <i>E</i> isomer, which is utilized to displace the acid from CB7, thereby switching the pH of the solution.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"150 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13353","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The photoswitching of supramolecular host–guest complexes is the basis of numerous molecularly controlled macroscopic functions, such as sol–gel transition, photopharmacology, the active transport of ions or molecules, light-powered molecular machines, and much more. The most commonly used systems employ photoactive azobenzene guests and synthetic host molecules, which bind as the stable E isomers and dissociate as the Z forms after exposure to UV light. We present a new, extraordinarily efficient cucurbit[7]uril (CB7)/diazocine host/guest complex with inverted stability that self-assembles under UV irradiation and dissociates in the dark. The association constants of the Z and E isomers in water differ by more than 104-fold. We also show that the thermally activated E → Z isomerization is significantly accelerated by CB7, which is a rare case of enzyme-like catalysis by transition state stabilization without product inhibition. In contrast to CB7, cucurbit[8]uril (CB8) binds both isomers with high affinity, showing good selectivity (∼1000-fold) toward the Z isomer. Notably, this isomer preferentially binds CB8 relative to CB7 by a factor greater than 1 × 106. We also use the system to introduce a supramolecular photoacid that builds on the increased basicity of a guest bound to CB7 and on the extremely high affinity of the E isomer, which is utilized to displace the acid from CB7, thereby switching the pH of the solution.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.