Deep hierarchical sorting networks for fault diagnosis of aero-engines

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jinlei Wu, Lin Lin, Dan Liu, Song Fu, Shiwei Suo, Sihao Zhang
{"title":"Deep hierarchical sorting networks for fault diagnosis of aero-engines","authors":"Jinlei Wu, Lin Lin, Dan Liu, Song Fu, Shiwei Suo, Sihao Zhang","doi":"10.1016/j.compind.2024.104229","DOIUrl":null,"url":null,"abstract":"In modern industry, timely health assessments of aero-engines are crucial for ensuring their proper functionality and the safety of aviation operations. However, during the collection of operating data for aero-engines, influential fault features may exhibit hysteresis or even overwhelmed due to transmission delays in some sensors. Furthermore, these features in the data at interval points are difficult to extract using traditional deep neural networks. Moreover, in aero-engine fault diagnosis, the number of normal samples is significantly higher than that of fault samples. As a result, traditional deep neural networks tend to focus on normal samples while fault samples are neglected, increasing the risk of missed diagnoses or misdiagnoses. To address these problems, this paper proposes a parallel convolutional neural network based on hierarchical sorting of state points (FSHSM-PCNN), to improve the synergistic effect between state point data at different hierarchical levels via the hierarchical sorting module, and to efficiently extract fault information via the parallel convolutional neural network. First, the state point data in the original samples is internally sorted along the time dimension by the fault significance-based hierarchical sorting module (FSHSM), and the different levels of state point data obtained after sorting reveal a reinforced synergistic effect. Second, a parallel convolutional neural network is developed to extract temporal status features and reinforced synergistic features, and the fused information is used for fault diagnosis. Finally, the performance of the proposed FSHSM-PCNN is evaluated using actual monitoring data from aero-engines. The experimental results show that the proposed method is effective in extracting fault features from the monitoring data. Compared to other methods in the ablation study, the proposed method improves average performance in aero-engine fault diagnosis by 12.46 %, 7.07 %, and 12.62 %, respectively. In diagnosis tasks with imbalanced datasets, its accuracy exceeds that of other methods by at least 5.01 %.","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"132 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.compind.2024.104229","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In modern industry, timely health assessments of aero-engines are crucial for ensuring their proper functionality and the safety of aviation operations. However, during the collection of operating data for aero-engines, influential fault features may exhibit hysteresis or even overwhelmed due to transmission delays in some sensors. Furthermore, these features in the data at interval points are difficult to extract using traditional deep neural networks. Moreover, in aero-engine fault diagnosis, the number of normal samples is significantly higher than that of fault samples. As a result, traditional deep neural networks tend to focus on normal samples while fault samples are neglected, increasing the risk of missed diagnoses or misdiagnoses. To address these problems, this paper proposes a parallel convolutional neural network based on hierarchical sorting of state points (FSHSM-PCNN), to improve the synergistic effect between state point data at different hierarchical levels via the hierarchical sorting module, and to efficiently extract fault information via the parallel convolutional neural network. First, the state point data in the original samples is internally sorted along the time dimension by the fault significance-based hierarchical sorting module (FSHSM), and the different levels of state point data obtained after sorting reveal a reinforced synergistic effect. Second, a parallel convolutional neural network is developed to extract temporal status features and reinforced synergistic features, and the fused information is used for fault diagnosis. Finally, the performance of the proposed FSHSM-PCNN is evaluated using actual monitoring data from aero-engines. The experimental results show that the proposed method is effective in extracting fault features from the monitoring data. Compared to other methods in the ablation study, the proposed method improves average performance in aero-engine fault diagnosis by 12.46 %, 7.07 %, and 12.62 %, respectively. In diagnosis tasks with imbalanced datasets, its accuracy exceeds that of other methods by at least 5.01 %.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信