Meta-task interpolation-based data augmentation for imbalanced health status recognition of complex equipment

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jinyuan Li, Wenqing Wan, Yong Feng, Jinglong Chen
{"title":"Meta-task interpolation-based data augmentation for imbalanced health status recognition of complex equipment","authors":"Jinyuan Li, Wenqing Wan, Yong Feng, Jinglong Chen","doi":"10.1016/j.compind.2024.104226","DOIUrl":null,"url":null,"abstract":"In the research of health status detection technology for complex equipment such as liquid rocket engines, the extreme working environment hinders the widespread conduct of fault experimental simulations, leading to data scarcity and imbalance. Consequently, the performance of intelligent models deteriorates rapidly with direct training. To address this issue, this paper proposes a meta-task feature space interpolation network model. Firstly, the model uses an encoder to map randomly selected task pairs to a more discriminative feature space, and then interpolates corresponding features and labels within this latent feature space to generate additional tasks, increasing the distribution density of tasks and alleviating the problem of insufficient training tasks. Furthermore, the model leverages self-distillation to improve the learning of label information. By integrating soft labels with supervised labels, it captures the hidden category information of newly interpolated tasks, thereby reducing the impact of class imbalance on model performance. The effectiveness of the proposed method is validated through a series of experiments conducted across three different scenarios. The results demonstrate that the proposed method achieves an average accuracy of 97.91% on the turbopump bearing dataset, which is a significant improvement over the comparative methods.","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"80 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.compind.2024.104226","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the research of health status detection technology for complex equipment such as liquid rocket engines, the extreme working environment hinders the widespread conduct of fault experimental simulations, leading to data scarcity and imbalance. Consequently, the performance of intelligent models deteriorates rapidly with direct training. To address this issue, this paper proposes a meta-task feature space interpolation network model. Firstly, the model uses an encoder to map randomly selected task pairs to a more discriminative feature space, and then interpolates corresponding features and labels within this latent feature space to generate additional tasks, increasing the distribution density of tasks and alleviating the problem of insufficient training tasks. Furthermore, the model leverages self-distillation to improve the learning of label information. By integrating soft labels with supervised labels, it captures the hidden category information of newly interpolated tasks, thereby reducing the impact of class imbalance on model performance. The effectiveness of the proposed method is validated through a series of experiments conducted across three different scenarios. The results demonstrate that the proposed method achieves an average accuracy of 97.91% on the turbopump bearing dataset, which is a significant improvement over the comparative methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信