{"title":"Streamlining Assembly Instruction Design (S-AID): A comprehensive systematic framework","authors":"Mirco Bartolomei, Federico Barravecchia, Luca Mastrogiacomo, Davide Maria Gatta, Fiorenzo Franceschini","doi":"10.1016/j.compind.2024.104232","DOIUrl":null,"url":null,"abstract":"Assembly instructions are detailed directives used to guide the assembly of products across various manufacturing sectors. As production processes evolve to become more flexible, the significance of assembly instructions in meeting rigorous efficiency and quality standards becomes increasingly pronounced. Nevertheless, the development of assembly instructions often remains unstructured and predominantly dependent on the experience or personal skills of the designer. This paper aims to address these issues by pursuing three main goals: (i) deciphering the assembly process and the information that characterizes it, thereby providing a taxonomy of instruction constituents; (ii) presenting a framework to assess the various formats in which such information can be communicated; and (iii) introducing a step-by-step method, named <ce:italic>S-AID</ce:italic>, which offers a consistent methodology for designers during the instruction design phase. Overall, this research provides a rigorous taxonomy of the building blocks of assembly instructions and defines their relationships with various instruction formats. Furthermore, by proposing a systematic design method, this works aims to address the redundancy and inconsistency commonly encountered in traditional instruction design processes. The proposed methodology is illustrated using a real-world case study involving the assembly of a mechanical equipment. Finally, the effectiveness of the <ce:italic>S-AID</ce:italic> method was evaluated quantitatively through comparative analysis with other instruction sets, focusing on metrics such as process failures, assembly completion time, and perceived cognitive load.","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"53 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.compind.2024.104232","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Assembly instructions are detailed directives used to guide the assembly of products across various manufacturing sectors. As production processes evolve to become more flexible, the significance of assembly instructions in meeting rigorous efficiency and quality standards becomes increasingly pronounced. Nevertheless, the development of assembly instructions often remains unstructured and predominantly dependent on the experience or personal skills of the designer. This paper aims to address these issues by pursuing three main goals: (i) deciphering the assembly process and the information that characterizes it, thereby providing a taxonomy of instruction constituents; (ii) presenting a framework to assess the various formats in which such information can be communicated; and (iii) introducing a step-by-step method, named S-AID, which offers a consistent methodology for designers during the instruction design phase. Overall, this research provides a rigorous taxonomy of the building blocks of assembly instructions and defines their relationships with various instruction formats. Furthermore, by proposing a systematic design method, this works aims to address the redundancy and inconsistency commonly encountered in traditional instruction design processes. The proposed methodology is illustrated using a real-world case study involving the assembly of a mechanical equipment. Finally, the effectiveness of the S-AID method was evaluated quantitatively through comparative analysis with other instruction sets, focusing on metrics such as process failures, assembly completion time, and perceived cognitive load.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.