Searching and Using MobiDB Resource 6 to Explore Predictions and Annotations for Intrinsically Disordered Proteins.

Maria Cristina Aspromonte, Federica Quaglia, Alexander Miguel Monzon, Damiano Clementel, Alessio Del Conte, Damiano Piovesan, Silvio C E Tosatto
{"title":"Searching and Using MobiDB Resource 6 to Explore Predictions and Annotations for Intrinsically Disordered Proteins.","authors":"Maria Cristina Aspromonte, Federica Quaglia, Alexander Miguel Monzon, Damiano Clementel, Alessio Del Conte, Damiano Piovesan, Silvio C E Tosatto","doi":"10.1002/cpz1.70077","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs) make up around 30% of eukaryotic proteomes and play a crucial role in cellular processes and in pathological conditions such as neurodegenerative disorders and cancers. However, IDPs exhibit dynamic conformational ensembles and are often involved in the formation of biomolecular condensates. Understanding the function of IDPs is critical to research in many areas of science. MobiDB is a unique resource that serves as a comprehensive knowledgebase of IDPs and intrinsically disordered regions (IDRs), combining disorder annotations from experimental evidence and predictions for a broad range of protein sequences. Over the past decade, MobiDB has evolved with a focus on expanding annotation coverage, standardizing annotation provenance, and enhancing database accessibility. The latest MobiDB, version 6, released in July 2024, includes significant improvements, such as the integration of AlphaFoldDB predictions and a new homology transfer pipeline that has substantially increased the number of entries with high-quality annotations. The user interface has also been updated, highlighting annotation features, clarifying the entry page, and providing an immediate overview of disorder, binding, and disorder functions information in the protein sequence. This protocol guides the user through applications of the MobiDB, including disorder prediction, curated data analysis, and exploration of interaction data. This guide covers how to perform a search in MobiDB annotations using the web interface and the MobiDB REST API for programmatic access. The protocols use a step-by-step walkthrough using the human growth hormone receptor to demonstrate MobiDB's functions for visualization and interpretation of protein disorder data. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Searching MobiDB query formats Basic Protocol 2: Searching MobiDB selected datasets and selected proteomes Basic Protocol 3: Performing a search on the Statistics page in MobiDB Support Protocol: Programmatic access with MobiDB REST API Basic Protocol 4: Visualizing and interpreting a MobiDB Entry: The GHR use case.</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 12","pages":"e70077"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpz1.70077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsically disordered proteins (IDPs) make up around 30% of eukaryotic proteomes and play a crucial role in cellular processes and in pathological conditions such as neurodegenerative disorders and cancers. However, IDPs exhibit dynamic conformational ensembles and are often involved in the formation of biomolecular condensates. Understanding the function of IDPs is critical to research in many areas of science. MobiDB is a unique resource that serves as a comprehensive knowledgebase of IDPs and intrinsically disordered regions (IDRs), combining disorder annotations from experimental evidence and predictions for a broad range of protein sequences. Over the past decade, MobiDB has evolved with a focus on expanding annotation coverage, standardizing annotation provenance, and enhancing database accessibility. The latest MobiDB, version 6, released in July 2024, includes significant improvements, such as the integration of AlphaFoldDB predictions and a new homology transfer pipeline that has substantially increased the number of entries with high-quality annotations. The user interface has also been updated, highlighting annotation features, clarifying the entry page, and providing an immediate overview of disorder, binding, and disorder functions information in the protein sequence. This protocol guides the user through applications of the MobiDB, including disorder prediction, curated data analysis, and exploration of interaction data. This guide covers how to perform a search in MobiDB annotations using the web interface and the MobiDB REST API for programmatic access. The protocols use a step-by-step walkthrough using the human growth hormone receptor to demonstrate MobiDB's functions for visualization and interpretation of protein disorder data. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Searching MobiDB query formats Basic Protocol 2: Searching MobiDB selected datasets and selected proteomes Basic Protocol 3: Performing a search on the Statistics page in MobiDB Support Protocol: Programmatic access with MobiDB REST API Basic Protocol 4: Visualizing and interpreting a MobiDB Entry: The GHR use case.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信