surtvep: An R package for estimating time-varying effects.

Journal of open source software Pub Date : 2024-01-01 Epub Date: 2024-06-28 DOI:10.21105/joss.05688
Lingfeng Luo, Wenbo Wu, Jeremy M G Taylor, Jian Kang, Michael J Kleinsasser, Kevin He
{"title":"surtvep: An R package for estimating time-varying effects.","authors":"Lingfeng Luo, Wenbo Wu, Jeremy M G Taylor, Jian Kang, Michael J Kleinsasser, Kevin He","doi":"10.21105/joss.05688","DOIUrl":null,"url":null,"abstract":"<p><p>The surtvep package is an open-source software designed for estimating time-varying effects in survival analysis using the Cox non-proportional hazards model in R. With the rapid increase in large-scale time-to-event data from national disease registries, detecting and accounting for time-varying effects in medical studies have become crucial. Current software solutions often face computational issues such as memory limitations when handling large datasets. Furthermore, modeling time-varying effects for time-to-event data can be challenging due to small at-risk sets and numerical instability near the end of the follow-up period. surtvep addresses these challenges by implementing a computationally efficient Kronecker product-based proximal algorithm, supporting both unstratified and stratified models. The package also incorporates P-spline and smoothing spline penalties to improve estimation (Eilers & Marx, 1996). Cross-validation and information criteria are available to determine the optimal tuning parameters. Parallel computation is enabled to further enhance computational efficiency. A variety of operating characteristics are provided, including estimated time-varying effects, confidence intervals, hypothesis testing, and estimated hazard functions and survival probabilities. The surtvep package thus offers a comprehensive and flexible solution to analyzing large-scale time-to-event data with dynamic effect trajectories.</p>","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"9 98","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open source software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/joss.05688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The surtvep package is an open-source software designed for estimating time-varying effects in survival analysis using the Cox non-proportional hazards model in R. With the rapid increase in large-scale time-to-event data from national disease registries, detecting and accounting for time-varying effects in medical studies have become crucial. Current software solutions often face computational issues such as memory limitations when handling large datasets. Furthermore, modeling time-varying effects for time-to-event data can be challenging due to small at-risk sets and numerical instability near the end of the follow-up period. surtvep addresses these challenges by implementing a computationally efficient Kronecker product-based proximal algorithm, supporting both unstratified and stratified models. The package also incorporates P-spline and smoothing spline penalties to improve estimation (Eilers & Marx, 1996). Cross-validation and information criteria are available to determine the optimal tuning parameters. Parallel computation is enabled to further enhance computational efficiency. A variety of operating characteristics are provided, including estimated time-varying effects, confidence intervals, hypothesis testing, and estimated hazard functions and survival probabilities. The surtvep package thus offers a comprehensive and flexible solution to analyzing large-scale time-to-event data with dynamic effect trajectories.

一个R包,用于估计时变效应。
surtp软件包是一个开源软件,用于使用r中的Cox非比例风险模型估计生存分析中的时变效应。随着国家疾病登记处大规模时间到事件数据的迅速增加,检测和计算医学研究中的时变效应变得至关重要。当前的软件解决方案经常面临计算问题,例如处理大型数据集时的内存限制。此外,由于小的风险集和接近随访期结束时的数值不稳定,对事件时间数据的时变效应进行建模可能具有挑战性。surtmp通过实现基于Kronecker产品的高效计算近端算法来解决这些挑战,该算法支持非分层和分层模型。该软件包还结合了p样条和平滑样条惩罚来改进估计(Eilers & Marx, 1996)。交叉验证和信息标准可用于确定最佳调优参数。实现了并行计算,进一步提高了计算效率。提供了各种操作特性,包括估计的时变效应,置信区间,假设检验,估计的危险函数和生存概率。因此,surtmp软件包为分析具有动态影响轨迹的大规模时间事件数据提供了全面而灵活的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信