Leveraging pharmacovigilance data to predict population-scale toxicity profiles of checkpoint inhibitor immunotherapy.

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dongxue Yan, Siqi Bao, Zicheng Zhang, Jie Sun, Meng Zhou
{"title":"Leveraging pharmacovigilance data to predict population-scale toxicity profiles of checkpoint inhibitor immunotherapy.","authors":"Dongxue Yan, Siqi Bao, Zicheng Zhang, Jie Sun, Meng Zhou","doi":"10.1038/s43588-024-00748-8","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitor (ICI) therapies have made considerable advances in cancer immunotherapy, but the complex and diverse spectrum of ICI-induced toxicities poses substantial challenges to treatment outcomes and computational analysis. Here we introduce DySPred, a dynamic graph convolutional network-based deep learning framework, to map and predict the toxicity profiles of ICIs at the population level by leveraging large-scale real-world pharmacovigilance data. DySPred accurately predicts toxicity risks across diverse demographic cohorts and cancer types, demonstrating resilience in small-sample scenarios and revealing toxicity trends over time. Furthermore, DySPred consistently aligns the toxicity-safety profiles of small-molecule antineoplastic agents with their drug-induced transcriptional alterations. Our study provides a versatile methodology for population-level profiling of ICI-induced toxicities, enabling proactive toxicity monitoring and timely tailoring of treatment and intervention strategies in the advancement of cancer immunotherapy.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-024-00748-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Immune checkpoint inhibitor (ICI) therapies have made considerable advances in cancer immunotherapy, but the complex and diverse spectrum of ICI-induced toxicities poses substantial challenges to treatment outcomes and computational analysis. Here we introduce DySPred, a dynamic graph convolutional network-based deep learning framework, to map and predict the toxicity profiles of ICIs at the population level by leveraging large-scale real-world pharmacovigilance data. DySPred accurately predicts toxicity risks across diverse demographic cohorts and cancer types, demonstrating resilience in small-sample scenarios and revealing toxicity trends over time. Furthermore, DySPred consistently aligns the toxicity-safety profiles of small-molecule antineoplastic agents with their drug-induced transcriptional alterations. Our study provides a versatile methodology for population-level profiling of ICI-induced toxicities, enabling proactive toxicity monitoring and timely tailoring of treatment and intervention strategies in the advancement of cancer immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信