Regulatory T cell expansion prevents retinal degeneration in type 2 diabetes.

IF 9.3 1区 医学 Q1 IMMUNOLOGY
María Llorián-Salvador, Daniel Pérez-Martínez, Miao Tang, Anna Duarri, Marta García-Ramirez, Anna Deàs-Just, Anna Álvarez-Guaita, Lorena Ramos-Pérez, Patricia Bogdanov, Jose A Gomez-Sanchez, Alan W Stitt, Cristina Hernández, Alerie G de la Fuente, Rafael Simó
{"title":"Regulatory T cell expansion prevents retinal degeneration in type 2 diabetes.","authors":"María Llorián-Salvador, Daniel Pérez-Martínez, Miao Tang, Anna Duarri, Marta García-Ramirez, Anna Deàs-Just, Anna Álvarez-Guaita, Lorena Ramos-Pérez, Patricia Bogdanov, Jose A Gomez-Sanchez, Alan W Stitt, Cristina Hernández, Alerie G de la Fuente, Rafael Simó","doi":"10.1186/s12974-024-03323-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The global incidence of type 2 diabetes (T2D) is rapidly increasing, with retinopathy being its most common complication and a leading cause of preventable blindness. Although the precise mechanisms involved in the development of diabetic retinopathy (DR) are not fully understood, defective immunomodulation is a recognized key factor in its pathophysiology. Regulatory T cells (Treg) regulate inflammation and promote regeneration, and while they are known to have important anti-inflammatory and neuroprotective roles in other tissues, including central nervous system, their role in the diabetic retina remains largely unknown. The aim of the present study is to examine the effect of Treg expansion of retinal neurodegeneration, an early event in the pathogenesis of DR.</p><p><strong>Methods: </strong>Treg expansion was achieved by co-injecting recombinant mouse IL-2 with anti-IL-2 monoclonal antibody or its isotype in db/db mice as an established model of T2D. Treg expansion was confirmed via flow cytometry in blood, spleen, and retina. Fundus angiography was performed in the days prior to animal sacrifice at 18 weeks. To study the effect of Tregs on retinal neurons, glia and vascular permeability, immunohistochemistry against Cone-Arrestin, PKCα, synaptophysin, ChAT, TH, GFAP, Iba-1, calbindin, Brn3a, RBPMS, isolectin B4, and albumin was used. Retinal VEGF levels were measured with a magnetic bead-based immunoassay, and NLRP3, Casp1, p20 and IL-18 were analyzed by Western Blot in retinal homogenates.</p><p><strong>Results: </strong>There was a significant decrease in Treg in db/db mice blood. When this deficiency was corrected in db/db mice by systemic Treg expansion, there was an effective protection against retinal neurodegenerative, gliotic, inflammatory changes and vascular leakage associated with T2D. Importantly, Treg expansion did not impact the T2D phenotype in db/db mice as evaluated by blood glucose, HbA1c and circulating insulin.</p><p><strong>Conclusion: </strong>Treg modulation in T2D offers a promising therapeutic approach to prevent early stages of DR. This strategy focuses on reducing neuroinflammation and mitigating the associated neuronal, glial, and vascular degenerative changes characteristic of DR.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"328"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03323-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The global incidence of type 2 diabetes (T2D) is rapidly increasing, with retinopathy being its most common complication and a leading cause of preventable blindness. Although the precise mechanisms involved in the development of diabetic retinopathy (DR) are not fully understood, defective immunomodulation is a recognized key factor in its pathophysiology. Regulatory T cells (Treg) regulate inflammation and promote regeneration, and while they are known to have important anti-inflammatory and neuroprotective roles in other tissues, including central nervous system, their role in the diabetic retina remains largely unknown. The aim of the present study is to examine the effect of Treg expansion of retinal neurodegeneration, an early event in the pathogenesis of DR.

Methods: Treg expansion was achieved by co-injecting recombinant mouse IL-2 with anti-IL-2 monoclonal antibody or its isotype in db/db mice as an established model of T2D. Treg expansion was confirmed via flow cytometry in blood, spleen, and retina. Fundus angiography was performed in the days prior to animal sacrifice at 18 weeks. To study the effect of Tregs on retinal neurons, glia and vascular permeability, immunohistochemistry against Cone-Arrestin, PKCα, synaptophysin, ChAT, TH, GFAP, Iba-1, calbindin, Brn3a, RBPMS, isolectin B4, and albumin was used. Retinal VEGF levels were measured with a magnetic bead-based immunoassay, and NLRP3, Casp1, p20 and IL-18 were analyzed by Western Blot in retinal homogenates.

Results: There was a significant decrease in Treg in db/db mice blood. When this deficiency was corrected in db/db mice by systemic Treg expansion, there was an effective protection against retinal neurodegenerative, gliotic, inflammatory changes and vascular leakage associated with T2D. Importantly, Treg expansion did not impact the T2D phenotype in db/db mice as evaluated by blood glucose, HbA1c and circulating insulin.

Conclusion: Treg modulation in T2D offers a promising therapeutic approach to prevent early stages of DR. This strategy focuses on reducing neuroinflammation and mitigating the associated neuronal, glial, and vascular degenerative changes characteristic of DR.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信